

Gerry Chen

Robotics PhD Student, Georgia Tech (412) 956-3047 gerry.chen2015@gmail.com https://gerry-chen.com

OVERVIEW

Generative embodied AI through a collaborative graffiti spray painting robot using diffusion models for robot action generation.

Expected graduation: May 2024 (Georgia Tech Robotics PhD)

Keywords: robot art, human-robot collaboration, computer vision, robotics, optimal control **Primary Languages:** Python, C++

EDUCATION

Georgia Institute of Technology, Ph.D. Robotics	08/2019 to Present
School of Interactive Computing	
Studying human-robot collaboration through generative art under Frank Del	laert and Seth Hutchinson
Thesis: Rendering, Replicating, and Adapting Human Motions on a Cable F	Robot for Artistic Painting
3.96/4.00 cumulative GPA	
Georgia Institute of Technology, M.S. Computer Science	08/2019 to 12/2022
College of Computing	
3.96/4.00 cumulative GPA	
Duke University, B.S.E. Electrical and Computer Engineering	08/2015 to 05/2019
Pratt School of Engineering	
Electrical & Computer Engineering (major), Mechanical Engineering (major),	CS (minor), Math (minor)
3.87/4.00 cumulative GPA, Magna Cum Laude	

PUBLICATIONS

- <u>G. Chen</u>, F. Dellaert, and S. Hutchinson, "Generalizing Trajectory Retiming to Quadratic Objective Functions", *IEEE International Conference on Robotics and Automation (ICRA)*. (2024). Pending Review
- <u>G. Chen</u>, H. Muriki, C. Pradalier, Y. Chen, and F. Dellaert, "A Hybrid Cable-Driven Robot for Non-Destructive Leafy Plant Monitoring and Mass Estimation using Structure from Motion", *IEEE International Conference on Robotics and Automation (ICRA)*. p (2023).
- Y. Zhang, F. Jiang, <u>G. Chen</u>, V. Agrawal, A. Rutkowski, and F. Dellaert, "Constraint Manifolds for Robotic Inference and Planning", *IEEE International Conference on Robotics and Automation (ICRA)*. p (2023).
- 8. <u>G. Chen</u>, S. Hutchinson, F. Dellaert, "Locally Optimal Estimation and Control of Cable Driven Parallel Robots using Time Varying Linear Quadratic Gaussian (LQG) Control", 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). p (2022).

- Y. Zhang, <u>G. Chen</u>, A. Rutkowski, F. Dellaert, "Efficient Range-Constrained Manifold Optimization with Application to Cooperative Navigation", 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). p (2022).
- G. Chen, S. Baek, J. Florez, W. Qian, S. Leigh, S. Hutchinson, and F. Dellaert, "GTGraffiti: Spray Painting Graffiti Art from Human Painting Motions with a Cable Driven Parallel Robot", *IEEE International Conference on Robotics and Automation (ICRA)*. p 3-19 (2022).
- A. Cohen, <u>G. Chen</u>, E. Berger, S. Warrier, G. Lan, E. Grubert, F. Dellaert, Y. Chen, "Dynamically Controlled Environment Agriculture: Integrating Machine Learning and Mechanistic and Physiological Models for Sustainable Food Cultivation", ACS ES&T Engineering. p 3-19 (2022).
- S. Yang, <u>G. Chen</u>, Y. Zhang, F. Dellaert, H. Choset, "Equality Constrained Linear Optimal Control With Factor Graphs", 2021 International Conference on Robotics and Automation (ICRA). p 9717-9723 (2021).
- 3. Z. Li, A. Yang, <u>G. Chen</u>, Z. Zeng, A. Peterchev, S. Goetz, "A High-Frequency Pulsating DC-Link for Electric Vehicle Drives with Reduced Losses", 47th Annual Conference of the *IEEE Industrial Electronics Society (IECON)*. p 1-6 (2021).
- P. Grady, <u>G. Chen</u>, S. Verma, A. Marellapudi, N. Hotz, "A Study of Energy Losses in the World's Most Fuel Efficient Vehicle", *IEEE Vehicle Power and Propulsion Conference (VPPC)*. p 1-6 (2019).
- 1. F. Wang^{*}, <u>G. Chen</u>^{*}, and K. Hauser, "Robot Button Pressing in Human Environments", 2018 IEEE International Conference on Robotics and Automation (ICRA). p 7173-7180 (2018).

SKILLS

- Diffusion Models, Embodied AI, Imitation Learning
- NeRF, 3D Reconstruction, Computer Vision
- State Estimation, SLAM, Optimal Control
- Strong command of Python, C++, and Matlab
- Proficiency in CUDA, PyTorch, HTML/CSS/JS
- Full-Stack Roboticist, Embedded, Hardware, ROS

HONORS AND AWARDS

Sigma Xi Honor Society	08/2020 to Present
Tau Beta Pi Honor Society – NC Gamma Chapter	05/2019 to Present
IEEE Eta Kappa Nu Honor Society – Delta Lambda Chapter	01/2018 to Present
Pi Tau Sigma Honor Society – Pi Iota Chapter	01/2017 to Present
GVU Foley Scholar	10/2022
Finalist	

Foley Scholars are the GVU Center's highest recognition for student research contributions to computing.

National Science Foundation Graduate Research Fellows Program	03/2020
Honorable Mention	
The NSF GRFP recognizes and supports outstanding graduate students in supported STEM	I disciplines.
Guinness World Records	06/2019
Most Efficient Prototype Electric Vehicle	
President of the Duke Electric Vehicles team that broke the record with 77.98Wh/100km.	
Duke University Electrical and Computer Engineering Department	05/2019
Graduation with Departmental Distinction	
Presented for my distinguished research and academic record.	
Guinness World Records	07/2018
Most Fuel-Efficient Vehicle	

Head of hydrogen fuel cell development for the record breaking fuel cell vehicle achieving 14,573MPGe.

RESEARCH EXPERIENCE

Robotics Estimation and Control

Georgia Institute of Technology - Dr. Frank Dellaert

- Combined estimation and optimal control using factor graphs
- Cable driven parallel robot (CDPR) design and control

Robot Art

Georgia Institute of Technology - Dr. Frank Dellaert & Dr. Seth Hutchinson

- Graffiti spray-painting robot based on a cable driven parallel robot (CDPR) design.
- Non-destructive plant analysis using structure-from-motion (SfM) and a cable-driven parallel robot.

Power Electronics

Duke University - Dr. Stefan Goetz and Dr. Angel Peterchev

- Implemented novel FOC motor controller using modular multilever series-parallel converter to selfbalance battery cells, reduce noise, increase voltage ratings, and minimize losses
- Thermal analysis of battery/converter modules for use in automotive setting
- Electrical losses analysis for MOSFET selection in converter modules
- Installation of novel motor controller in electric vehicle to test practical cell-balancing performance

Fuel Cell Hybrid Vehicle

Duke University - Dr. Josiah Knight and Dr. Nico Hotz

- Optimization of fuel cell operating parameters for use in hybrid vehicle to achieve 58.9% in-system efficiency (increase from baseline efficiency of 40%)
- Design and optimization of voltage converter for active supercapacitor load power leveling system resulting in 22% higher vehicle efficiency
- See Publication 2 fuel cell vehicle system level design

Robotics Motion Planning

Intelligent Motion Laboratory - Dr. Kris Hauser

- Applied convolution-based image similarity metrics for database assisted vehicle path planning
- Fabricated silicon and polyure hane cornea models with <50um repeatability for use in surgical robot testing
- See Publication 1 work funded by NSF Research Experiences for Undergraduates (REU) to implement a Precision Positioning Unit (PPU) on the Tele-Robotic Intelligent Nursing Assistant (TRINA)

08/2018 to 05/2019

08/2019 to Present

08/2017 to 05/2018

01/2017 to 05/2018

08/2019 to Present

- Redundancy resolution for minimum manipulability / maximum continuous range joint configurations
- Fabricated polyurethane "finger" tip with integrated tactile sensor and 95.7% actuation success rate

WORK HISTORY

Computer Vision Intern

Verdant Robotics

- Prototyped (Jax) and implemented (CUDA) KLT Pose tracker to improve vehicle localization accuracy and robustness
- Implemented field-scale offline mapping / 3D reconstruction for farmer analytics and visualization
- Prototyped (GTSAM) passive auto-calibration of camera intrinsics and extrinsics to streamline manufacturing and improve accuracy under changing environmental conditions

Instructor

Georgia Institute of Technology

• CS3630: Intro to Perception & Robotics

Software Engineer Intern: Autonomous Vehicle Perception 05/2021 to 08/2021 Zoox - Dr. Subhasis Das

- Developed smoothing-based tracker for improved object tracking using sensor fusion
- My code achieved improvements in all tracking metrics for use in offline labeling, with 2 patents pending

Integrated Control and Estimation Intern

Air Force Research Laboratory (Eqlin AFB) - Dr. Adam Rutkowski

- Refine collaborative vehicle control with imperfect multi-vehicle trajectory estimations
- Compute optimal sensor measurement timing and inter-vehicle communication
- Compute optimal collaborative trajectories to minimize navigation uncertainty using factor graphs

Controls Engineer Intern

Deka R&D - Dirk Van Der Merwe

- Developed novel 2-wheel balancing control scheme with constrained wheel displacement (patent pending)
- Created multi-system integration over CAN, EtherCAT, RS232 to create hybrid wheeled/legged robot
- Developed stability control of robot w/ powered casters + differential steering to test high speed dynamics

Robotics Motion Planning Intern 01/2017 to 05/2018 Intelligent Motion Laboratory - Dr. Kris Hauser • Work on PPU for TRINA (see entry in Research Experience) • Coded (Python, C++) and tested max. continuous range / min. manipulatability arm configurations **Teaching Assistant** 08/2019 to 12/2019 Georgia Institute of Technology • CS3630: Intro Perception & Robotics Fall 2019 08/2016 to 05/2018 **Teaching Assistant** Duke University • EGR201: Mechanics of Statics Fall 2017 Fall 2017

• ECE230: Microelectronics

05/2023 to 08/2023

05/2022 to 08/2022

06/2020 to 08/2020

05/2018 to 08/2018

• ECE230: Microelectronics	Summer 2017
• EGR103: Computational Methods in engineering	Fall 2016
• CS201: Data structures and Algorithms	Fall 2016
Tutor	05/2014 to $05/2019$
Multiple Employers	
• Duke Academic Resource Center - group instruction:	
– Multivariable Calculus	08/2016 to $05/2019$
– Linear Algebra	01/2017 to $01/2018$
– Differential Equations	01/2017 to $01/2018$
• Duke Academic Resource Center - individual instruction:	
– Multivariable Calculus	08/2016 to $05/2017$
– Linear Algebra	08/2016 to $05/2017$
– Differential Equations	08/2016 to $05/2017$
• America Reads America Counts at Duke	08/2015 to $06/2016$
– Durham Public Schools	
- Math + Reading	
• Kumon Math and Reading Center of Fox Chapel	05/2014 to $08/2016$
- personalized curriculum generation for 40+ students	
- student performance evaluations	

EXTRACURRICULAR ACTIVITIES

Co-President

Duke Electric Vehicles Team

- World Record (2019): World's most efficient electric vehicle team president
- World Record (2018): World's most fuel efficient vehicle head of hydrogen system
- Lead creation of a fully autonomous vehicle to allow the vehicle to follow a "total system energy" optimized path subject to physical control constraints
- Co-lead hydrogen fuel cell hybrid vehicle for 2018 to achieve 14,573 MPGe
- Design + Manufacture + Test the high power super-capacitor control board to increase vehicle efficiency by 22%
- Create an automated testing system resulting in fuel cell efficiency increase from 40% to 63%
- Design + Manufacture + Install the carbon fiber inserts to decrease weight and increase modularity
- 2018: 1st place H2, 1st place battery-electric (12,398 MPGe), Technical Innovation Award at the Shell Eco-Marathon Americas

СТО

Delta Band Inc. - deltatrainer.fit

- Designed all electrical systems of the strength training workout tracker watch based on machine learning
- Currently on 7th generation electrical boards (Dec 2018)
- Initiating small-scale (100 devices) manufacturing for beta-testing devices to be shipped Jan 2019

Project Lead

Solar Benches

- Lead technical, financial, and administrative aspcts of augmenting existing campus benches with solar powered night-time task lighting and laptop/phone chargers to raise enthusiasm for clean energy
- Installed 2 test benches on campus after passing safety inspection on an off-site prototype bench

08/2015 to 08/2019

08/2018 to 05/2019

01/2016 to 01/2018

RELEVANT COURSEWORK

Georgia Institute of Technology

- CS7643 Deep Learning
- CS8803 Probabilistic Graphical Models in Machine Learning
- CS7476 Advanced Computer Vision
- CS8803 Mobile Manipulation
- CS6601 Artificial Intelligence
- ECE6553 Optimal Control

Duke University

- CS520/MATH565 Numerical Analysis
- MATH577 Mathematical Modeling
- MATH216 Linear Algebra and Diff. Equations
- MATH353 Ordinary and Partial Diff. Equations
- ECE382/ME344 Control Systems