

Is your robot motion jerky?

Generalizing Trajectory Retiming to Quadratic Objective Functions

Gerry Chen, Frank Dellaert, and Seth Hutchinson Georgia Institute of Technology

Introduction

Trajectory Retiming:

compute a feasible speed profile to execute a path

Example Applications:

Decoupled approach to Motion Planning

Predefined path (e.g. painting, machining)

Problem Formulation

Path: Parameterization: $q(s): [0,1] \to \mathbb{R}^n$ $s(t): [0,T] \to [0,1]$

 $s^*(t) = \arg \min$

C(s) — objectives

subject to

 $\boldsymbol{A}(s)\ddot{\boldsymbol{q}} + \dot{\boldsymbol{q}}^T\boldsymbol{B}(s)\dot{\boldsymbol{q}} + \boldsymbol{f}(s) \in \mathscr{C}(s),$ $oldsymbol{A}^v(s)\dot{oldsymbol{q}}+oldsymbol{f}^v(s)\in\mathscr{C}^v(s)$

Dynamics & state/control limits

Related Works

Time-Optimal Path Parameterization (TOPP)

Minimize trajectory duration (C(s) := T)

The Problem

Bang-bang solution saturates control limits

- ➤ No margin for closed-loop controller
- Cannot handle secondary objectives

Approach

Instead of maximizing speed, let's minimize quadratic objectives!

$$s^*(t) = \underset{s(t)}{\operatorname{arg min}} \quad \|SpeedObjective\|^2 + \|ControlEffort\|^2 + \dots$$

subject to Dynamics

 $Control/State\ Limits$

With a general quadratic objective function, we can balance multiple objectives such as max speed (min time), match target speed, max control margin, min control effort, etc.

We call this "QOPP": Quadratic Objective Path Parameterization

Sparse QP

 $x^*, u^* = \underset{u_0, \dots, x_N}{\operatorname{arg min}} \sum_{k=0} Q_k x_k^2 + R_k x_k u_k + N_k u_k^2$ subject to $\boldsymbol{a}_k u_k + \boldsymbol{b}_k x_k + \boldsymbol{c}_k \in \mathscr{C}_k, \quad k = 0, \dots, N,$ $x_{k+1} - x_k - 2u_k \Delta_s = 0, \quad k = 0, \dots, N-1,$

Factor Graph representing QP

Animated elimination procedure

How to solve QOPP

- Transcribe into sparse QP using standard TOPP parameterization & discretization
- 2. Solve sparse QP using factor graph variable elimination^[2]

The factor graph depicts the sparsity pattern of the problem.

Performing elimination: During elimination, we only ever need to do 2 types of operations:

- Eliminate u_k : Re-write equality constraint & substitute
- Eliminate x_k : Solve 2-var parametric piecewise QP

Thanks to the special structure we leverage with factor graphs,

we can solve QOPP in O(n) time!

Results

TOPP constantly hits control limits. Meanwhile, QOPP allows us to trade-off speed for control margin.

As a result, executing on a real robot, TOPP has poor tracking performance (QOPP is still good).

QOPP is as-fast or faster than TOPP (C++) Runtime is O(n) w.r.t. trajectory length

Conclusions

By balancing multiple objectives & constraints, in practice QOPP achieves better tracking performance and can be solved as-fast or **faster than TOPP**.

Select References

[TOPP-RA]: H. Pham and Q.-C. Pham, "A New Approach to Time-Optimal Path Parameterization Based on Reachability Analysis," TRO, 2018. [2]: S. Yang, G. Chen, Y. Zhang, H. Choset, and F. Dellaert, "Equality Constrained Linear Optimal Control With Factor Graphs," ICRA, 2021.