
diffvg+CLIP: Generating Painting Trajectories from Text

Gerry Chen, Alice Dumay, Mengyi Tang

Abstract

Given a sentence, the goal of our project is to find out
the optimized trajectories for a painting robot to paint an
image that illustrates the context of the sentence. We inves-
tigate two solution approaches. In the first approach, we
consider two stages: in the first stage a set of candidate
images are generated in a classification task to match the
given sentence, and in the second stage a candidate raster
image is simplified into a robot-paint-image along with a
vector trajectory with a color labels. For the first stage,
we implemented CLIP (Contrastive Language-Image Pre-
training), a computer vision system released by OpenAI to
generate candidate images. In the second stage, we pro-
posed two different approaches: (i) using an off-the-shelf
differentiable vector graphics rasterizing library named dif-
fvg and (ii) applying a simple image segmentation task SLIC
and backpropagating through a probability-based network
to achieve a set of probability measure, which can be repre-
sented as the trajectory. In the second approach, we pair
diffvg with CLIP and back-propogate through the entire
chain to produce vector graphics which are described by
a sentence. Additional details are provided in Section 2.

1. Introduction and Related Work

Text to image generation has become popular as deep
learning proposes powerful tools and advanced feature rep-
resentation explored by researchers. For example, in [15],
a generative adversarial text to image synthesis is pro-
posed to produce a synthesis of realistic images from text.
The authors used a GAN formulation to build a connec-
tion between text features and image pixels. In addition,
[18] investigate the same problem using GAN and intro-
duce a novel conditioning augmentation technique to im-
pose smoothness in the latent conditioning manifold. An
extension of this work can be found in [19]. More works in
this field can be found in [17, 20, 14, 10].

However, all these works have their limitations when it
comes to painting the image out by using a robot in the im-
plementation since the high resolution of the output image
may not be a good fit for a simple painting task in an op-
timized trajectory. One way to achieve a trajectory from

Figure 1. Our algorithm inputs a text prompt (“A small girl in
the grass plays.”) and outputs a robot trajectory which, when
executed, will paint a picture. This image is the simulated painting
that would result from a robot following the trajectory generated
by the prompt.

given text is to build a bridge between the high-resolution
images and vectored images. Works have been done in
this area various methods. For example, in [12], an im-
age vectorization technique that operates on a color image
augmented with a depth map is proposed to use both color
and depth edges to define a vectorized path. In [11], the au-
thor first proposed a new form of vector graphics Temporal
Diffusion Curve (TDC) to model the evolution of strokes.
In [7], Posson Vector graphics (PVG) is presented as an ex-
tension of the popular diffusion curves to generate smooth-
shaded images. In [3], the authors encoded global manip-
ulation geometries and local image details within a hybrid
vector structure, using parametric patches and detailed fea-
tures for localized and parallelized thin-plate spline inter-
polation. However, all these works have a complex repre-
sentation with a heavy computation time of the vectorized
images and do not guarantee that the trajectory is optimized
for the painting task. For this reason, we want to design a
simpler way to find out a suitable trajectory for real painting
jobs associated with the text-image task.

Motivated by the task of painting using a robot (i.e. gen-
erating trajectories that will produce quality paintings), we
present an application of CLIP and diffvq to perform the
task of say-and-paint. We pursue two different approaches:
(1) first generating a reference raster image then vectoriz-
ing it and (2) directly optimizing a vector representation by
back-propagating through a differentiable rasterizer feeding

1

into CLIP. In both cases, the vector representation equates
to a robot trajectory, where the xy trajectory corresponds to
the robot path and the stroke width corresponds to the dis-
tance of the robot spray paint to the canvas. See [2] for an
example robot platform created by one of us authors that
can execute such trajectories with real paint.

The first proposed method has two stages: in the first
stage, we use CLIP to generate a raster image given a sen-
tence. In the second stage, we use a differentiable rasterizer
to optimize for a vectorized image which, when rasterized,
will best match the target raster image. We develop our own
differentiable rasterizer in which a simple image segmenta-
tion task is performed followed by a density map learning
strategy in which the trajectory is represented by multiple
Gaussian distributions at different timesteps in each sub-
region of a unified color of a segmented image. We also
apply diffvg [9] to our task as a baseline.

The second proposed method feeds the raster output of
a differentiable rasterizer as the input of CLIP, then opti-
mizes for the vector input which generates minimizes the
difference between the raster image embedding and the tar-
get text prompt embedding.

The main contributions of this work are outlined below:

1. We introduce a simple methodology (sentence – im-
age – trajectory) to produce a vectorized image from a
given sentence, where the image illustrates the content
in the content of the sentence.

2. We build a simple model to learn the trajectory of a
binary image and extend it to a colorful image.

3. We implemented it using CLIP and the proposed
method to produce a vectorized image along with tra-
jectories to achieve the task. We also implemented
combining the existing methods CLIP and Diffvq to
produce vectorized images.

4. We provide experimental results based on the pro-
posed method and showed examples where the pro-
posed method can give decent results.

2. Method
2.1. Stage I (Input Sentence, output image)

In this section, we generated some images illustrating a
sentence given as an input. This was done based on CLIP
(Contrastive Language-Image Pretraining), a computer vi-
sion system released by OpenAI [13]. This model was
trained to perform zero-shot learning, which means to give
significant results on any classification dataset without be-
ing trained on it previously. CLIP was trained to predict
how likely a given sentence matches with an arbitrary im-
age. This is called contrastive pre-training.

The text encoder, together with an image encoder is
generating 9 images for each input sentence. To get bet-
ter performances, we chose to fine-tune CLIP with the
Flick30k dataset, composed of 31,000 images from Flickr,
together with 5 reference sentences provided by human an-
notators. We build our encoders, with the neural architec-
ture of resnet50 [6] as an image encoder, together with a
distilBERT text encoder [16]. On top of that, we added pro-
jection heads. We put all these elements into CLIP and were
able to generate images.

2.2. Stage II - A (Input Image, output trajectories)
use SLIC to do image segmentation

In this section, we present the method to produce tra-
jectories for a robot to paint a given image by considering
the stroke as a series of Gaussian distributions in 2D where
the mean and standard deviation can be understood as lo-
cation and radius. To handle images of different intensities
of color and reduce computation cost, we first perform an
image segmentation task then minimize a loss of the total
distribution of the output image. Our goal is to produce a
paint that is as close as possible to the segmentation result
and minimize the total length of the trajectory. The detail of
the proposed method is as follows:

For a given image I , we first perform an unsupervised
image segmentation task by using SLIC [1, 8] which adapts
the traditional k-means method in clustering approach to
efficiently generate super-pixels. A segmented image then
can be represented by

Ĩ = k (0 ≤ k ≤ K − 1). (1)

Here K is the total number of segments in the segmentation
task. Notice that K can also be predetermined in the super-
vised task and this can be dependent on the complexity of a
given image. For the best result of visualization, we suggest
K be between 20 and 70.

For simplicity, let’s denote the region where Ĩ = k to be
Ωk such that

Ĩ = ∪kΩk. (2)

Hence in each subs-task, we consider our target image to
be

Iktarget =

{
1 Ĩ = k

0 o.w.
(3)

for 0 ≤ k ≤ K − 1.
For each k (0 ≤ k ≤ K − 1), we then initialize a

sequence {vk
i }, where each element vi denotes the an in-

dependent 2D Gaussian distribution with mean xk
i , y

k
i and

standard deviation σk
i , σ

k
i :

vk
i = (xk

i , y
k
i , σ

k
i) ∼ N ((xk

i , y
k
i), (σ

k
i , σ

k
i)) (4)

0 ≤ k ≤ K − 1, 0 ≤ i ≤ N − 1

2

where K is the total number of segments of a given image
and N is the total number of discrete points in each trajec-
tory. For simplicity we consider N = 8 for all segments.
This is based on the assumption that the given image is
smooth enough to be segmented into images of similar com-
plex sub-regions. For the case where an image has an irreg-
ular shape of boundaries with a simple shape of main ob-
jects, we suggest considering different N for each k where
a complexity measurement can be designed as an extension
of our work.

For faster convergence, we consider the initial condition
to be

(xk
i , y

k
i , σ

k
i) = (xk

0 +r cos(
2πi

N
), yk0 +r sin(

2πi

N
), c+

i

N
),

(5)
where c1, c2, c3 are predetermined coefficient and (xk

i , y
k
i)

denotes the center of the sub-region Ωk where Ĩij = k.
Here we consider r = 10, c = 2 as default values. Notice
that in the initial condition, the xi, yi are required to be in
the shape of mincing the trajectory instead of random walk
for faster convergence.

Now we can further represent the output image with re-
spect to Ωk to be

Ikout = 2

[
1− 1

1 + exp−
∑N

i=0 N ((xj
i , y

j
i), (σ

j
i , σ

j
i))

]
(6)

Figure 2 shows an example of where the sub-region Ωk is
attached to the boundary condition. Without the pushing
back restriction in Equation (6), it’s possible that the trajec-
tories may go to the other side of the image under periodic
boundary conditions. In order to guarantee that the means
of distribution (xj

i , y
j
i) is located inside of region Ωk, we

consider

xj
i = min(max(0, xj

i), Nx−1), yji = min(max(0, yji), Ny−1)
(7)

where Nx, Ny are the size of the normalized image. In our
experiments, we set (Nx, Ny) = 128× 128.

To let the sequence vj
i converge to the trajectory that pro-

duces a binary image Iktarget close to the target image, we
design our loss function motivated by the two following sce-
narios:

1. the trajectory is possible to produce the target image
while σj

i is not large enough to cover the target area to
too large to over paint the unnecessary area. For this
reason, we want to minimize

||Ikout − Iktarget||2

2. The target image is close to the output image while
the locations (xi, yi) are scattered, “discontinuous”,

and/or revisiting old locations. For this reason, we
want to minimize

N−1∑
i=0

||vk
i+1 − vk

i ||2.

Now we represent our loss function as follows:

Loss = α||Iout − Itarget||2 + β

N−1∑
i=0

||vj
i+1 − vj

i ||2. (8)

Assuming that the initial condition is large enough to
cover the target, we consider more heavily penalizing the
region where is over-painted. Hence we further represent
our loss function as follows:

Loss =α||2ReLu(Iout − Itarget) +ReLu(Itarget − Iout)||2

+ β

N−1∑
i=0

||vj
i+1 − vj

i ||2. (9)

Then we apply Stochastic Gradient Descent on each tar-
get image Iktarget to obtain the painting trajectory in this
region Ωk to be:

Ikpaint = (kR, kG, kB)I
k
out ∈ RNx×Ny×3, (10)

where (kR, kg, kb) denotes color intensity of the segmented
image in sub-region Ωk for 0 ≤ k ≤ K. Figure 3 shows an
example of how the trajectory converges to the initial a sub-
region from the initial condition. The last column shows
the comparison between the target binary image(in blue)
and the optimized output of the paint w.r.t the subregion(in
pink). It is shown that after 13 iterations, the over-painted
region is shrunk and the total region converges close to the
target. After 39 iterations, the general shape of the target
image is achieved. After 52 iterations the delicate bound-
aries are showing out more.

Notice that there exists some small region near the
boundary of Ωk that is over-painted. For this reason, we
apply a mask I(Ωk) which denotes the characteristic equa-
tion on ωk to deal with this issue. Finally, we represent the
whole paint by trajectory as follows:

Ipaint =

K∑
k=0

IkpaintI(Ωk) (11)

2.3. Stage II - B (Input Image, output trajectories)
Use Diffvg

As an alternative to our custom paint rendering optimiza-
tion using Gaussian distributions, we also produce trajec-
tories of the same images using an off-the-shelf differen-
tiable vector rendering library called diffvg. While our ren-
derer inputs a set of locations and parameters for Gaussian

3

https://github.com/BachiLi/diffvg

Figure 2. An example of converging to a sub-region Ωk attached to the boundary of the original image.

Figure 3. An example of converging to a sub-region from an over-painted initial condition after 80 steps.

Figure 4. Our “Stage I and II combined” algorithm to generate
vector trajectories given a text prompt

marks, the diffvg work inputs a set of continuous (poly-
nomial) strokes. Although diffvg has the drawback of ne-
glecting the non-uniform paint distribution inherent to spray
paint dispersion, it is more mature than our Gaussian-based
approach. diffvg uses the shortest distance from pixel to
curve to form a gradient and employs sophisticated meth-
ods to differentiably compute shortest distances and handle
anti-aliasing (since aliasing otherwise causes mis-behaved
gradients).

A similar optimization procedure is used to find the op-
timal set of stroke parameters to fit a raster target image
by backpropagating and performing gradient descent on the
stroke parameters. RMSE between the target and rendered
image was used as the loss function:

Loss(x) = ||Itarget − f(x)|| (12)

where || · || denotes the Frobenius norm, Itarget is the target
image, f(·) is applying diffvg to render an image, and x are
the stroke parameters. The stroke parameters are defined
as a list of cubic bezier curve coefficients and widths (one
width per stroke) and diffvg smoothly interpolates between
xy waypoints using cubic spline interpolation.

The points, stroke widths, and colors are optimized with
the Adam optimizer with learning rates of 1.0, 0.1, and 0.01
respectively for 150 iterations.

2.4. End-to-end Stage I and II combined

Finally, we attempt to omit the intermediate rasterized
image step by combining the differentiable vector graphics

Figure 5. Image generated with the CLIP architecture and input
sentence ”A small girl in the grass plays”

renderer with CLIP and back-propagating through the en-
tire network to directly optimize for a vector representation
that best represents a text prompt. Figure 4 summarizes our
algorithm.

It should be noted that, after completing our code, we
discovered that CLIPDraw [5] is a pre-existing work from
2021 with a virtually identical algorithm. This is not par-
ticularly surprising, since we were inspired by the popu-
lar VQGAN+CLIP wave [4] (in which a traditional, raster-
producing GAN is paired with CLIP) which undoubtedly
inspired many derivative works. It should hopefully be ev-
ident from our code that we did not use CLIPDraw’s im-
plementation, however, we did borrow ideas (such as the
image augmentations) from commonplace VQGAN+CLIP
techniques.

3. Experimental results

3.1. Stage I

From our built network based on CLIP, we were able to
input a sentence, such as ”A small girl in the grass plays”
and the model gave us images similar to the one presented
in Figure 5. We noticed that the model gives better results
when the sentence is more descriptive. Giving a single word
as the input ended up with poorly generated images.

4

Figure 6. An example of painting unified thickness of irregular shape binary object. It is shown that after 33 iteration, the general shape of
the object is found.

3.2. Stage II -A

We present our vectorization results on various tasks us-
ing our own differentiable rasterizer.

• Task on binary image with unified background
We started building this project by working on a binary
image where only 0 and 1 are given as values of pixels.
Figure 6 shows an example of converging from a cir-
cle to a heart shape. In this example, only the back re-
gions are considered to be painted, which indicates that
the trajectory should follow the curve’s shape ideally.
It is shown that after 33 iterations, the general shape
of the object is found. This example shows that the
proposed method is capable to identify the trajectory
of any shape. However, a closed curved is favorable,
which is also the limitation of the proposed method.

• Task on a colorful image with disconnected region
with unified background
We then explore the method to deal with a colorful im-
age. We started with a simple image with white back-
ground and two letters G and T with green and blue
color, which is shown in the target image in Figure
7(a). In this example, we consider the original image
as a binary image, then perform learn the trajectory
over the two letters as a whole. In the end, we im-
pose the color that matches the color in the original
image to the stroke (Gaussian). Figure 7(b) showed
the converging status of the trajectories. It is shown
that the general shape is found after 249 iterations.
From this example, we can extend from binary im-
age to colorful image. However, we see the limitation
that the trajectories consider painting everything as a
whole in the given image while this will cause some
issue when the image has more complicated, or the im-
age has smoothly changing color, or the background is
considered to be painted.

• Performing image segmentation task to do multiple
learnings on a discontinuous colorful image with
background
We further explore utilizing image segmentation task
SLIC to segment a discontinuous image into multiple
sub-regions including the background, then implement
the method described in section 2.2 to perform mul-

tiple tasks. Figure 9 shows the result of an example
of painting 8 sub-regions of a given region by using
N = 8 as the total number of time steps in each sub-
region. It is shown that by doing multiple tasks in each
region Ωk, the proposed method can identify the op-
timal trajectories in each region and paint a roughly
close image.

• The effect of time step N in each sub-region
Figure 9 shows an example of using different numbers
of time steps in painting each sub-region. It is shown
that when N = 20, the white background is covered
more by the stroke while when N = 10, there is some
blurry black region that is not covered by the Gaus-
sian distribution. This is because when (i) the area to
paint is relatively large, (ii) the sub-region Ωk’s shape
is complicated enough such that the radius σj

i can not
be too large, and (iii) there are not enough number
of time steps, there does not exist such a trajectory
that can cover the region and not exceed too much the
boundary. To penalize the overpainted region, there
would be some dark parts showing up in the result.
However, if N is too large and the computation power
is allowed, this wouldn’t affect the smoothness or the
visualization result. Therefore, we suggest that using
relatively large N in each region if computation cost is
allowed. It is also suggested to use different N in each
sub-region dependent on the complexity of the shape
of this sub-region and the total area of this sub-region.

• Painting continuous colorful image.
In the example, we show 9 examples of the painting
continuous colorful image in Figure 10, 11,12,13, 14,
15, 16, 17, 18. The original images are the output
of CLIP from inputting the sentence A small girl
on the grass play. In each figure, the top left shows
the normalized original image. The top right shows
the segmented image from unsupervised segmentation
task. In each sub-region, a trajectory of 8 time steps
is learned for painting after 80 iterations. The final
painted image is shown in the bottom left. The re-
flected trajectories are shown in bottom right. The
learning rate for (xj

i , y
j
i) and σj

i are 100 and 0.004.
The parameter α = 10, β = 0.05. A decent result
can be obtained with 1 minute. It is shown that the

5

(a)

(b)
Figure 7. An example of painting colorful image with disconnected region with unified background. (a) Optimized image and target image.
(b) Converging status of target image from initial after every 83 iterations. It is shown that after 249 iteration, the general shape of the
object is found.

(a)

(b)
Figure 8. Simulated paintings generated with “Stage I and II com-
bined” method using prompts (a) “A drawing of a beach with a
pier on a cloudless day” and (b) “A small girl on the grass play”

proposed method can learn separated trajectories to
roughly paint an image as a response to a sentence. It is
also shown that the result is dependent on the segmen-
tation task. Further work needs to be done to perform
suitable segmentation tasks for robot painting.

3.3. Stage II -B

Figure 19 shows an example of using diffvg to produce
the trajectories based on the image in generated raster im-
age from Figure 10 (with the prompt “A small girl on the
grass play”). Shown in Figure 19 are vector representations
with varying numbers of strokes from 64 to 1024. Because

the painting process is time consuming and has limited pre-
cision, we seek the fewest number of strokes that still pro-
duces a reasonable result. It is the belief of the authors that
even 64 strokes produces good results.

The xy trajectories that the robot must follow are also
shown in Figure 19 and are evidenced to be smooth and
well-defined.

One limitation, that we attempted to address but were un-
able to obtain good results for, was to limit the total number
of colors available in the “color palette”. This is relevant to
our application of graffiti painting since spray paint is dif-
ficult to mix so often there is a predefined set of 24 colors
that are available. However, when allowing diffvg to pro-
duce general paintings, every stroke is almost guaranteed to
have a different color. Constraining strokes to share colors
(e.g. “weight sharing”) or to have fixed colors from a palette
are potential approaches. Assigning strokes colors from a
discrete set of color options is an alternative approach that
is likely to be very challenging due to the difficulty of hy-
brid optimization problems (those involving both discrete
and continuous variables).

Another limitation is that many graffiti artworks are styl-
ized by outline drawings, whereas computing vector draw-
ings to match a photorealistic picture will not generate out-
line drawings. We hope our “Stage I and II combined” will
fare better at these types of stylizations.

3.4. End-to-end Stage I and II combined

A selection of simulated images generated using our
“Stage I and II combined” method are shown in Figure
8, and a comparison of results using different numbers of
strokes can be found in Figure 20. Some additional results
can also be found in the powerpoint file uploaded as part of
the “code”.

6

(a) N = 10 (b) N = 20
Figure 9. [Effect of the number of time steps N] An example of learning trajectory of discontinues colorful image including the background.
In (a) and (b): Upper left is the original image. Upper right: Segmented image by using Pillow, where each segment(region) can be
represented by using a unified color defined by the average of the color in this region in the original image. (8 segments). Bottom left: the
output image painted by a robot. Bottom right: the corresponding trajectories designed for the robot to follow. In this example, we show
that the proposed method can paint a decent close image with N sufficient large.

Figure 10. Example 1 - A small girl on the grass play. Upper
left: output image from Clip by inputting the sentence A small
girl on the grass play. Upper right: Segmented image by using
Pillow, where each segment(region) can be represented by using a
unified color defined by the average of the color in this region in
the original image. (47 segments). Bottom left: the output image
painted by a robot. Bottom right: the corresponding trajectories
designed for the robot to follow.

Generating good paintings is very difficult. A hypothe-
sized large contributor to this is that, once a stroke color has
been chosen and the stroke has grown sufficiently large, it
becomes very difficult to change the color since the solu-
tion has fallen into a basin of attraction around that color.
This manifests in many spurious strokes of random colors
that should not be made, but cannot be optimized out be-
cause changing the color by differential amounts will not
necessarily make the image semantically closer to matching
the target sentence. This is made more obvious by watch-
ing videos of the optimization process, in which the colors

Figure 11. Example 2 - A small girl on the grass play. Output im-
age from Clip, segmented image (62 segments), output “painting”,
and robot trajectories.

of the strokes have been mostly decided after only a few
dozen iterations. Another hypothesized contributor is the
non-smoothness of the landscape - there is not an obvious
smooth path from a random collection of lines to a seman-
tically meaningful painting. In contrast, matching a raster
image is much easier since me can get each of the strokes to
better match the colors and shapes underneath it. Moving a
squiggle by a tiny amount doesn’t make it any more or less
close to a target sentence.

Observing the optimization process in video form, it is
clear that the background colors almost always converge
very quickly (a less than a dozen iterations) and the few out-
lier colored strokes, if we get lucky, get optimized into fore-
ground objects. For example, prompts that include words
like ”grass” or ”beach” will cause almost all the strokes to
converge very quick to green or blue/tan respectively. Typi-

7

Figure 12. Example 3 - A small girl on the grass play. Output im-
age from Clip, segmented image (81 segments), output “painting”,
and robot trajectories.

Figure 13. Example 4 - A small girl on the grass play. Output im-
age from Clip, segmented image (75 segments), output “painting”,
and robot trajectories.

Figure 14. Example 5 - A small girl on the grass play. Output im-
age from Clip, segmented image (77 segments), output “painting”,
and robot trajectories.

Figure 15. Example 6 - A small girl on the grass play. Output im-
age from Clip, segmented image (68 segments), output “painting”,
and robot trajectories.

Figure 16. Example 7 - A small girl on the grass play. Output im-
age from Clip, segmented image (68 segments), output “painting”,
and robot trajectories.

Figure 17. Example 8 - A small girl on the grass play. Output im-
age from Clip, segmented image (68 segments), output “painting”,
and robot trajectories.

8

Figure 18. Example 9 - A small girl on the grass play. Output im-
age from Clip, segmented image (59 segments), output “painting”,
and robot trajectories.

Figure 19. Rendered paintings of trajectories optimized by diffvg
using (left-to-right) 64, 256, 512, and 1024 strokes. On the top
row are the rendered paintings and on the bottom row are the robot
trajectories with colors.

cally the large-scale structure image has more-or-less stabi-
lized after around 100 iterations, with further iterations only
causing strokes to slide around slightly (presumably due to
the randomness inherent in the augmentations).

Some approaches that may improve performance include
using a background color suitable to the setting, initializing
stroke locations based on an existing image, and starting
with many random initializations and selecting only a few
to continue with after just a few dozen iterations (based on
minimum loss), i.e. random-restarts.

4. Conclusion and Disscussion

In this report, we presented a novel methodology to pro-
duce a vectorized image from a given sentence. We imple-
mented combing CLIP and Diffvq and showed experimental
results based on this. We also proposed a simple method to
replace Diffvq and produce a set of trajectories which can
be represented by

Figure 20. Rendered paintings of trajectories optimized by dif-
fvg+CLIP for the prompt “A small girl on the grass play” using
(left-to-right) 16, 64, 256, and 1024 strokes. On the top row are
the rendered paintings and on the bottom row are the robot trajec-
tories with colors.

1. Since we con considering learning the trajectories in
each region Ωk, We suggest considering parallel Com-
puting to perform multiple tasks at the same time.

2. Based on the fact that the painting result would be
highly dependent on the segmentation result, we sug-
gest exploring better segmentation or image vectoriza-
tion method.

3. The proposed scheme can be modified such that not
only closed curves are preferred.

4. Regarding the loss function. We explore the curvature
term. However, due to the boundary condition in Equa-
tion (7), the curvature cannot be defined in some cases.
However, this is still useful if a robot prefers to turn
smoothly than sharply.

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk. Slic superpixels compared to state-of-the-art
superpixel methods. IEEE transactions on pattern analysis
and machine intelligence, 34(11):2274–2282, 2012.

[2] G. Chen, S. Baek, J.-D. Florez, W. Qian, S. won Leigh,
S. Hutchinson, and F. Dellaert. Extended version of GTGraf-
fiti: Spray painting graffiti art from human painting motions
with a cable driven parallel robot, 2021.

[3] K.-W. Chen, Y.-S. Luo, Y.-C. Lai, Y.-L. Chen, C.-Y. Yao,
H. kuo Chu, and T.-Y. Lee. Image vectorization with real-
time thin-plate spline. IEEE Transactions on Multimedia,
22:15–29, 2020.

[4] K. Crowson. Vqgan+clip(updated). https:
//colab.research.google.com/github/
justinjohn0306/VQGAN-CLIP/blob/main/
VQGAN%2BCLIP%28Updated%29.ipynb?
authuser=3.

[5] K. Frans, L. B. Soros, and O. Witkowski. Clipdraw: Explor-
ing text-to-drawing synthesis through language-image en-
coders, 2021.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

9

https://colab.research.google.com/github/justinjohn0306/VQGAN-CLIP/blob/main/VQGAN%2BCLIP%28Updated%29.ipynb?authuser=3
https://colab.research.google.com/github/justinjohn0306/VQGAN-CLIP/blob/main/VQGAN%2BCLIP%28Updated%29.ipynb?authuser=3
https://colab.research.google.com/github/justinjohn0306/VQGAN-CLIP/blob/main/VQGAN%2BCLIP%28Updated%29.ipynb?authuser=3
https://colab.research.google.com/github/justinjohn0306/VQGAN-CLIP/blob/main/VQGAN%2BCLIP%28Updated%29.ipynb?authuser=3
https://colab.research.google.com/github/justinjohn0306/VQGAN-CLIP/blob/main/VQGAN%2BCLIP%28Updated%29.ipynb?authuser=3

[7] F. Hou, Q. Sun, Z. Fang, Y.-J. Liu, S.-M. Hu, H. Qin, A. Hao,
and Y. He. Poisson vector graphics (pvg). IEEE transactions
on visualization and computer graphics, 26(2):1361–1371,
2018.

[8] B. Irving. maskslic: regional superpixel generation with ap-
plication to local pathology characterisation in medical im-
ages. arXiv preprint arXiv:1606.09518, 2016.

[9] T.-M. Li, M. Lukáč, G. Michaël, and J. Ragan-Kelley.
Differentiable vector graphics rasterization for editing and
learning. ACM Trans. Graph. (Proc. SIGGRAPH Asia),
39(6):193:1–193:15, 2020.

[10] W. Li, P. Zhang, L. Zhang, Q. Huang, X. He, S. Lyu, and
J. Gao. Object-driven text-to-image synthesis via adversar-
ial training. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12174–
12182, 2019.

[11] Y. Li, X. Zhai, F. Hou, Y. Liu, A. Hao, and H. Qin. Vec-
torized painting with temporal diffusion curves. IEEE trans-
actions on visualization and computer graphics, 27(1):228–
240, 2019.

[12] S. Lu, W. Jiang, X. Ding, C. S. Kaplan, X. Jin, F. Gao, and
J. Chen. Depth-aware image vectorization and editing. The
Visual Computer, 35(6):1027–1039, 2019.

[13] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and I. Sutskever. Learning transferable vi-
sual models from natural language supervision. CoRR,
abs/2103.00020, 2021.

[14] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford,
M. Chen, and I. Sutskever. Zero-shot text-to-image genera-
tion. arXiv preprint arXiv:2102.12092, 2021.

[15] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and
H. Lee. Generative adversarial text to image synthesis. In In-
ternational Conference on Machine Learning, pages 1060–
1069. PMLR, 2016.

[16] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert,
a distilled version of BERT: smaller, faster, cheaper and
lighter. CoRR, abs/1910.01108, 2019.

[17] M. Tao, H. Tang, S. Wu, N. Sebe, X.-Y. Jing, F. Wu,
and B. Bao. Df-gan: Deep fusion generative adversar-
ial networks for text-to-image synthesis. arXiv preprint
arXiv:2008.05865, 2020.

[18] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and
D. N. Metaxas. Stackgan: Text to photo-realistic image syn-
thesis with stacked generative adversarial networks. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 5907–5915, 2017.

[19] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and
D. N. Metaxas. Stackgan++: Realistic image synthesis with
stacked generative adversarial networks. IEEE transactions
on pattern analysis and machine intelligence, 41(8):1947–
1962, 2018.

[20] M. Zhu, P. Pan, W. Chen, and Y. Yang. Dm-gan: Dy-
namic memory generative adversarial networks for text-to-
image synthesis. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
5802–5810, 2019.

10

