
ECE 350 Final Project Report

Aditya Sridhar, Gerry Chen, Faith Rodriguez

December 2018

1 Introduction

In this project, two wireless controlled robot raced each other in an attempt to
hit checkpoints that would allow them to gain points and power ups. In order
to implement this project, a combination of handmade hardware components
and various forms of software were required. This report demonstrates the
overall project design, the input and output used, the challenges faced, circuit
diagrams, the testing approach, and process and MIPS assembly logic.

2 Overall Project Design

The robots are controlled using wireless controllers that contain a steering wheel
and pedal to control steering and throttle, respectively, for each robot. These
values, which indicate the robots’ state, are read using an ADC0808 chip in
conjunction with the FPGA and stored appropriately for the processor to use.
This controller FPGA also handles speed/steering power-up duration logic for
robots and stores motor effects. The wheel commands are then sent over UART
to the radio module, where they are communicated wirelessly to the robots.
When a robot connects with a checkpoint both it and that checkpoint send out
a message through UART communication that indicated that the object has
been touched. The receiver FPGA than stores these values, recognizing that
messages sent within a specific time frame correlate to the same touch event.
These touch events correlate to point updates to the robot’s score. The receiver
FPGA then outputs these values to the VGA, which displays the points on a
scoreboard. Please note that we had a bug in our logic, which caused the FPGA
to not recognize when two messages were a part of the same touch event. Due to
this, scores are not updated. In response, the player one score was instead turned
into a game time counter to show that input can be received and displayed on
the VGA.

Figure 1 show the schematic of the project, including overall underlying
features implemented at each phase of the project.

1

Figure 1: Schematic of the robotic control. (a) The physical control enforced by
the combination of the steering wheel and the pedal produce the steering and
throttle, respectively. This information is fed into the cFPGA module through
the ADC. (b) Using UART, touches between robots and checkpoints enforce
the power-up effects on speed and steering for those robots. (c) The processor-
converted left and right motor velocities are transmitted as packets via UART
to the robots for necessary control. (d) The power-up effects on points are
enforced by UART-based touches between the robots and checkpoints, just as
in part b.

3 Input and Output

Primary input and output hardware for the FPGAs included the ADC (non-
negligible!), radio, and VGA display.

3.1 ADC

The ADC0808 IC was used for its availability. Part of the difficulty in interfacing
with the IC arose from switching the addresses at the appropriate times and
waiting for EOC to be asserted before saving the data, but also in maintaining a
state machine to register the ADC values to be later processed by the processor.

The state control had to be made such that the clock, ALE, START, and
ADDR pins were asserted at the proper times according the specifications and
EOC. The digital out pins had to, of course, be read solely at the appropriate
times between EOC and START of the next conversion. By cycling through
the 4 analog input addresses of the 4 controllers, the human control values were
updated around 1kHz - far more than adequate. Combined with the stability
of the registers during read operations and accessibility by the main processor,
the ADC module was a non-negligible task to implement.

2

3.2 Radio

The UART communication used to interface with the radio module required the
use of a non-memory mapped UART module and the accompanying control to
manage the packet protocol (packet protocol provided in Appendix A.2). The
byte packet protocol was custom developed to maintain robust, bidirectional,
low-latency communication among devices. The protocol supported unambigu-
ous communication from any device to any other set of devices. The transmis-
sion must also execute exactly once on a control signal edge and complete a full
transmission in the presence of interrupting requests. The receiving must hold
on to the data in an appropriate buffer before saving the data to a specified
space upon a control signal.

Although the physical layer- decoding/encoding of the UART signals from
bytes were imported from a Quartus IP generator, the real challenge was man-
aging the receiving and transmission of arbitrary bytes to unambiguously de-
fine the exact stream of data across multiple bytes and devices. Due to the
inherently unreliable nature of all communications (especially wireless!), error
detection and handling was very challenging and required significant original
thought/design.

3.3 VGA

The VGA is used to display the game state information. The VGA requires the
use of custom design to selectively stitch together many images (i.e. background,
text, numbers) into one screen in real time.

4 Challenges and Solutions

4.1 ADC

Analog to Digital Conversion proved to be a much more difficult task than
initially expected. While we did have a starting basis provided due to a lab
activity, the process of storing the values into registers turned out to add a
large complication. Ensuring that the conversion of the signal specified by
ADDR pins had completed and indeed reflected the signal desired (as opposed
to the previous signal, for instance), required careful timing and trial/error. The
storing of the read values into registers accessible by the processor also posed
challenges pertaining to difficulty of verification. The general approach we took
was to output one single register’s data to LEDs and confirm the LED value
matched expected behavior of pin voltage even in the presence of many other
signals.

4.2 UART Implementation

Overall, UART turned out to be a much more difficult task than originally an-
ticipated. It took us a really long time to even understand the use of the UART

3

module as provided by a Quartus async component. Once making sense of the
inputs and outputs that were required of us. While getting the transmission
and reception of a single packet did not prove to be a hugely difficult task, we
had a lot of trouble implementing the transmission and reception of an entire
message. Initially the FPGA was constantly receiving packages but never regis-
tering a message. When we attempted to look at the data of the packages being
received they appeared to have no correlation to each other. However, once we
realized that we needed to add a delay to the robot’s communication code, we
were able to begin to once again make progress in figuring out UART. Once we
figured out basic UART communication we experienced additionally difficulty
obtaining integration between that module and the FPGAs. It was difficult to
determine the validity of data being sent and received and the conversion of
message formatting required to reach the radio module added an extra layer
of difficulty. Finally, testing this module and its associated submodules was
extremely difficult due to the fixed speed requirement and inability to perceive
information that fast. A signal analyzer was key to tracking down bugs and
ensuring error-free communication, while a UART-USB converter was critical
to ensuring matching of the protocol.

4.3 VGA

5 Circuit Diagrams

4 custom PCBs were ordered for this project:

1. controller board - houses ADC0808, 2 potentiometers, joystick footprint,
3 switches, buzzer + driving MOSFETs, pull-up resistors, and a 40-pin
IDC header.

2. radio board - held an 8-pin Nordic nRF24 module, an Arduino nano for
packet transcieving, and a 40-pin header to connect to the FpGA. These
electrical connections significantly improve reliability and robustness of
the system.

3. robot board - the main board that makes electrical connections in the
robot. This involves motor control, touch sensing, wireless communica-
tion, and visual identification.

4. checkpoint board - the main board that makes the checkpoint electrical
connections including many simlar functionalities as the robot board but
without motor control and with more refined reading.

6 Testing

When testing modules that connected software to the hardware that had been
created, an incremental approach was used. This means that we would focus on

4

getting one aspect of a component completed and then tested its functionality on
the FPGA through a combination of LED displays and switches. For example,
when testing UART communication. We first implemented and tested single
packet receiving, then single pack transmitting. We then approached message
receiving then message transmitting. Starting small allowed us to be confident
in our code base and helped isolate bugs in order to make the development
process more smooth.

7 Processor Logic and Assembly

To design the logic for the controller and receiver/robot FPGAs, we used the
five-stage single-issue 32-bit processor and MIPS assembly code. In this section,
we describe the modifications made to the processor, a description of how we
tested the processor, and a run-down of the assembly integration linked to the
processor.

7.1 Processor Modifications

We used key features of the original processor to facilitate the control flow. Some
existing features of the processor include multiplication/division (Mult/Div)
modules with Modified Booth’s Algorithm, hazard handling, and full bypassing.

To build upon this version of the processor for our project, we first motivate
the use of the processor. Based on the current modularization of the code-
base/logic, we notice that many processes, including the ADC conversion and
the power-up effects on the robots, require the use of the processor, thereby
encouraging the need for an appropriate design model. We choose to store the
inputs to processor-based operations in storage units, defined by registers. In
this way, the processor acts independently from other processes and does not di-
rectly rely on the outputs of the other processes. We may also encounter delays
and unstable inputs that may adversely affect the processor itself; therefore, the
introduction an intermediate module serves as an apt choice and reinforces the
need for efficient modularization.

For such implementation, we modify the processor to include additional
custom functions, which are defined as follows:

• time $rd : Returns the current time/cycle of the game and stores it in
register $rd .

5

• imova $rd, $rs, N : Moves data into the processor’s register file (register
$rd) from the intermediate module’s “ADC storage” (register $rs) for the
cFPGA module; can add an immediate value (N).

• imovp $rd, $rs, N : Moves data into the processor’s register file (register
$rd) from the intermediate module’s “communication/packets” (register
$rs) for each FPGA module; can add an immediate value (N).

• imovt $rd, $rs, N : Moves data into the processor’s register file (register
$rd) from the intermediate module’s “calculation/timings” (register $rs)
for each FPGA module; can add an immediate value (N).

• emovt $rd, $rs, N : Moves data from the processor’s register file (register
$rd) to the intermediate module’s “calculation/timings” (register $rs) for
each FPGA module; can add an immediate value (N).

7.2 Assembly

We tested the above processor using assembly code, which defines the list of
operations for both FPGAs and is imported as .MIF files into the Quartus
megafunction for instruction memory. One MIPS code file was generated for
each FPGA module.

In the cFPGA MIPS file, we begin by reading in the ADC digital values
from ADC. Thereafter, for each possible robot-checkpoint touch, we check if
the advertising times for both the robot and the checkpoint match (or differ by
δ, where δ is about 500 ms). We also request the same of their touch durations,
or the length of time before the robot and checkpoint no longer touch. If both
conditions are satisfied, then the ”match” triggers a power-up effect on the
robot, where the effect can be applied as follows:

• Increase/decrease the speed of the current robot using some operation
such as ADD and MUL.

• Increase/decrease the steering of the current robot.

• Increase/decrease the speed of the opposing robot using some operation.

• Increase/decrease the steering of the opposing robot.

All possible robot-checkpoint combinations are traversed through and checked
for similar times and touch durations, and for each match, we incorporate its
respective effect using processor computation. Finally, We then loop back to
the beginning and restart the for matched robot-checkpoint combinations. In
this way, we are ”actively watching” for touches at all iterations.

Subsequently, we notice the same patterns for the rFPGA as for the cFPGA,
except the effect is applied using only points rather than both speed and steering.
An additional difference of the rFPGA is that it does not read from the ADC;
therefore, we do not implement the imova custom function here.

6

Figure 2: Flowchart of MIPS assembly code for the cFPGA

The flowchart in Figure 2 demonstrates the overall flow of the assembly
code and how it is used in the context of the controller FPGA. NOte that the
flowchart for the receiver/robot FPGA is very similar, except we do not read
from the ADC.

8 Conclusion

We designed and implemented a robot game that compete to earn the largest
number of points possible. In addition to the design overview, we further pre-
sented individual components and key features that contributed to the larger
project objectives.

7

9 Pictures of the Project

Figure 3: VGA Scoreboard

8

Figure 4: Completed robots and checkpoints

9

Figure 5: CAD model and completed steering wheel

Figure 6: Controller board rouding and PCB

10

A Communication Packet Protocol

A.1 Communication Protocol

All packets shall be sent as an 8-bit, no-parity, 1 stop bit message at 115200
baud. In other words, a 115200 8N1 UART packet.

Furthermore, each packet’s first bit will be a 1 if there will be another byte
after. The last packet of each set will have a 0 in the first bit.

A.2 Transmission Structure

Each transmission shall consist of the following 7-byte structure:

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6

time[27-21] time[20-14] time[13-7] time[6-0] command payload[13:7] payload[6:0]

This is invariant of whether the transmission is from the FPGA or radio.

A.3 Command Specifications

A.4 7-bit command codes and payloads

The 7-bit command and accompanying payload bytes are defined as follows

23emsender 24emreceiver command payload
6 5 4 3 2 1 0 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cFPGA robot 000 robot ID left motor vel right motor vel
robot FPGAs 001 robot ID touch duration

checkpoint FPGAs 010 checkpoint ID touch duration
rFPGA cFPGA 100 game state auxilliary info
cFPGA rFPGA 101 powerup state auxilliary info

A.4.1 4-bit game state command codes

The 4-bit game state commands sent from the rFPGA to the cFPGA are as
follows

11

Description game state command auxilliary info

Start game 0000 –
End game 0001 –

Reset game 0010 –
Set time 0011 –

Disable player 0100 robotID (bits 13-10)
Enable player 0101 robotID (bits 13-10)

Disable powerups 0110 –
Enable powerups 0111 –

Clear all powerups 1000 –
Acknowledge receipt 1111 powerup command ac-

knowledged (13-10)
robotID (9-6)

A.4.2 4-bit powerup state command codes

The 4-bit powerup state commands sent from the cFPGA to the rFPGA are as
follows

Description powerup state command auxilliary info

Powerup deactivated 0000 robotID (bits 13-10) - powerupID (bits 9-2)
Powerup activated 0001 robotID (bits 13-10) - powerupID (bits 9-2)

Acknowledge receipt 1111 game command acknowledged (13-10)

12

