Hyperspectral 3D Reconstruction: towards Non-destructive Plant Nutrient Estimation

Georgia Tech Institute for Robotics and Intelligent Machines

¹Institute for Robotics and Intelligent Machines, College of Computing, Georgia Institute of Technology ²N.E.W. Center for Agricultural Technology, Civil and Environmental Engineering, Georgia Institute of Technology ³Data-driven Robotics for Environment Assessment and Monitoring (DREAM) Lab, Georgia Tech-Europe

	Background
Motivation	Farmers want feedback to track crop health
	Researchers want data to develop plant growth models
Existing	Cut down plant and send to lab for analysis
Methods	Measuring nutrient content is destructive and expensive
Current	Researchers need very large sample sizes to compensate for
Limitations	destructive loss and statistical variation
	(Cannot track a single plant over time since the first
	measurement is destructive)
Proposed	Non-destructively estimate nutrient content using
Solution	hyperspectral imaging

Prior Works

Hyperspectral 3D Reconstruction

Gerry Chen¹, Yongsheng Chen², Cédric Pradalier³

Objectives

- 1. Identify important considerations for hyperspectral camera
- 2. Collect a small hyperspectral image dataset
- 3. Validate Hyperspectral 3D reconstruction approaches
- 4. Qualitatively assess potential for nutrient estimation

Methodology

1. Collect a Dataset

- Dataset:
 - 4-6 distinct plants
 - ~50 images / plant (2 elevations, 24 images/elevation)
 - Measure volume (using water displacement)
- Camera:
 - SOC710-VP Hyperspectral Camera
 - 128 spectral bands (371-1044nm)
 - 696x520 resolution
 - 12bit depth

2. Create Hyperspectral (HS) 3D Reconstructions

- Pseudo-RGB SfM to validate image/feature quality
- Implement 2 baselines
 - Project HS images onto 3D point clouds
 - Merge single-wavelength SfM results using ICP
- Implement Proposed HS-NeRF approach
- 3. Evaluate
- Qualitative: spectral reflectance vs plant, organ, tissue
- Quantitative: compare reconstructed volume to GT
- Quantitative: compare spectral reflectances to literature

Proposed Approach: Hyperspectral NeRF

Pseudo-RGB

Images

from dataset

Robotics: Mount a hyperspectral (HS) camera to a robotic imaging system. **Dataset:** Collect a larger dataset with ground-truth nutrient measurements. Phenotyping: Nondestructively estimate nutrient content using HS imaging

Georgia Nutrients, Energy, and Water Tech Center for Agriculture Technology

Georgia Tech

Preliminary Results

Dataset Collection: Collected 2 datasets of hyperspectral images:

RGB 3D Reconstruction: Perform SfM on pseudo-RGB images

Expected Results

Implementing Baselines

- Baseline 1 (projection) will be more difficult than Baseline 2 (ICP)
- Baseline 1 (projection) will be more accurate than Baseline 2 (ICP)
- Hyperspectral NeRF will be most accurate, but have more noise

Evaluation

- Spectral reflectance will differ by plant, but spatial resolution may be insufficient to detect per-organ or per-tissue differences.
- Volume estimation will be within 25% of ground-truth volume.

Future Work

Selected References

[0] P. Pandey, Y. Ge, V. Stoerger, and J. C. Schnable, "High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging," Frontiers in n, and F. Dellaert, "A Hybrid Cable-Driven Robot for Non-Destructive Leafy Plant Monitoring and Mass Estimation using W. A. M. van der Heijden, "Non-destructive automatic leaf area measurements by combining stereo and time-of-flight images," IET Computer Vision, vol. 8, no. 5, pp. 391-403, 2014. [3] J. Dong, J. G. Burnham, B. Boots, G. Rains and F. Dellaert, "4D crop monitoring: Spatio-temporal reconstruction for agriculture," 2017 IEEE International International Systems 2017 IEEE International International Systems 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 3878-3885, doi: 10.1109/ICRA.2017.7989447. [4] A. Chaudhury et al., "Computer Vision Based Autonomous Robotic System for 3D Plant Growth Measurement," 2015 12th Conference on Computer and Robot Vision, 2015, pp. 290-296, doi: 10.1109/CRV.2015.45. [5] M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, R. O. Prum, and D. J. Brady, "3d imaging spectroscopy for measuring hyperspectral patterns on

solid objects," ACM Trans. Graph., vol. 31, no. 4, jul 2012. [6] A. Zia, J. Liang, J. Zhou, and Y. Gao, "3d reconstruction from hyper- spectral images," in 2015 IEEE Winter Conference on Applications of Computer Vision, 2015, pp. 318–325.