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Abstract—Resource use efficiency in agriculture is becoming
increasingly important as the world population grows and cli-
mate change impacts food production. Accordingly, precision
agriculture adoption is growing, but requires more accurate plant
growth modeling and monitoring to be most effective. The plant
phenotyping community has devised many techniques for non-
destructively estimating plant properties such as mass, stress
state, and nutrient concentration using computer vision and
specialized sensors. In particular, computer vision techniques
have been used to analyze plant structure while hyperspectral
data has been used to analyze plant nutrient concentrations at
a field- or plant- level. We seek to combine these techniques
to measure the nutrient distribution within a plant over time to
better model how nutrient flows dictate plant growth. In this
preliminary work, we collect a dataset of 6 sets of ~50 images
towards constructing hyperspectral 3D reconstructions of plants.

I. INTRODUCTION

As environmental conservation is becoming an increasingly
important issue, efficient agricultural practices which maxi-
mize output while minimizing resource input and environ-
mental impact are imperative to exercise and further develop.
For example, according to the EPA, nitrogen fertilizer alone
contributes, in the form of N2O, at least 4.1% of total US
greenhouse gas emissions [1]. Meanwhile, current farming
practices encourage excess, blanket applications of fertilizer
as opposed to the targeted, “smart” applications as part of the
growing precision agriculture movement being made possible
by recent advances in sensors, data, and Al [2].

Plant growth models are imperative for precision agriculture
to predict crop yields under various conditions. In controls
terms, we must model the system dynamics of the biological
plant to apply optimal control. Therefore, farmers seek real-
time, actionable data on their crops while researchers seek
more, better data to study growth models. Plant biomass,
nutrient content, and other properties are of particular interest
to both farmers and researchers.

Existing methods for analyzing plant mass and nutrient
content are destructive: they require harvesting the plant to
weight it, dehydrate it, and send it to a lab for testing. This
is not only expensive, but also significantly limits the quantity
and statistical significance of data collected. For example,
studying plant growth often requires tracking plant metrics as
it grows, but destructive analyses make it impossible to mea-
sure the same plant multiple times since the first measurement
requires killing the plant. Instead, many sets of plants must be
grown under identical conditions and periodically harvested
for analysis.

Robotics and computer vision may offer significant value by
enabling non-destructive methods for analyzing plant proper-

ties. Prior works have shown how 3D reconstructions from
RGB imagery can be effectively used to estimate plant mass
and growth, while other works have shown how hyperspectral
(HS) imagery can be used to estimate nutrient content, health,
photosynthetic efficiency, and growth regions of plants. How-
ever, only limited works have studied 3D HS reconstructions.
Prior works have projected HS data onto 3D reconstructed
surfaces or generated 3D surfaces using HS reconstructions
directly, but none consider HS data in volumetric representa-
tions, which may offer insight into the 3D structural/spatial
distribution of plant properties and more accurate whole-plant
nutrient content estimations.

II. RELATED WORK

In this review, Section summarizes how hyperspectral
(HS) imaging is used in plant monitoring and analysis, Section
discusses 3D reconstruction especially as applied to
plants, and Section discusses works that attempt to create
3D reconstructions in the HS color space.

A. Hyperspectral Imaging

HS imaging is becoming an increasingly useful tool in plant
analysis since it can be used to track the concentrations of
different resources, nutrients, and molecules across the plant.
Since different molecules reflect light differently in different
wavelengths, scientists have been able to correlate different
spectral reflectances with concentrations of certain molecules
such as common forms of macro- and micro-nutrients, water,
and chlorophyll. While the total space of works studying is
vast, [3]-[6] are reviews of the most common applications
and techniques for HS imaging in plant analysis.

HS super-resolution is a research area that aims to re-
duce the challenges associated with collecting HS imagery
by predicting HS imagery from less intensive sensors. In
addition to the cost and portability challenges associated with
HS cameras, HS cameras tend to have a tradeoff between
spatial, temporal, and wavelength resolution. HS-from-RGB is
a standardized task [7|] with benchmarks and datasets that aim
to predict HS imagery from RGB imagery, but is not currently
sufficiently accurate for the small signals required for plant
analysis. In the future, fine-tuning on large amounts of plant-
specific imagery may improve the suitability of HS-from-RGB
for plant analysis. Other HS super-resolution tasks to predict
HS data from multi-spectral (MS) imagery or improve the
spatial resolution of HS images (e.g. by fusing the high spatial
resolution of HS imagery with the high wavelength resolution
of MS imagery) [8], [9]. Although HS super-resolution is an
interesting and related field, we plan to use an off-the-shelf



HS camera to limit the scope of our work. Future works
may see direct estimation of nutrient and other distributions
within plants by using HS super-resolution techniques and
intermediate HS ground-truth supervision.

B. 3D Reconstruction

This section has been significantly abbreviated since modern
off-the-shelf RGB SfM and photogrammetry softwares are of
very high quality. For additional background, please refer to
[10].

1) Sensors: Almost all 3D reconstruction methods (even
those that also use additional sensors) leverage RGB cameras
given their ubiquity, low cost, and richness of information
afforded by the high resolution. I will discuss works using
RGB-only, direct-depth, and structured-light.

RGB-only methods, thanks to advances in structure-from-
motion and multi-view stereo that have produced high quality
off-the-shelf photogrammetry packages, have become suffi-
ciently accurate for many applications. [10]—[13]] use a single
high-resolution SLR camera to manually take photographs and
use photogrammetry methods to create full 3D reconstructions.
The reconstructions can be computed and analyzed for leaf
geometry analysis in 20-30 minutes. [[14] applies a very similar
method but using a handheld stereo camera rig rather than
monocular. [15]] also uses stereo cameras, but also investi-
gates leveraging salient outer-contour features in addition to
traditional (sparse) 3D reconstructions. [16], [[17] both focus
on estimating large-scale crop field biomass (not focusing on
single-plant measurements), with [[16] using UAV imagery and
[17] using fixed monitoring stations with cameras.

Discussion of other sensor types, such as IR-based depth,
ToF-based depth, light-field cameras, and structured-light
based systems are omitted for brevity, but are common in plant
phenotyping literature.

2) NeRF: Neural Radiance Fields (NeRF) is a recent de-
velopment in the multi-view stereo stereo step of structure-
from-motion which uses deep learning to learn a model
describing the spatial radiance properties of the object [18].
In the standard formulation, an MLP is used to represent the
4D RGB-+radiance as a function of 5D camera position and
view-angle. By representing not only the surface point-cloud
(as with e.g. SfM) but instead a volumetric representation,
we believe NeRF techniques will be particularly useful for
HS imaging since plant structures are not opaque in all
wavelengths.

3) Applications: 3D reconstruction of plants is most often
used to track plant growth. Plant growth can be tracked
through total plant biomass estimates [10f], [13[, [15]—[17],
[19] or through individual plant organ segmentation [[12], [20],
[21]. As compared to 2D approaches to plant phenotyping
(e.g. top-down image only), 3D methods are able to provide
more comprehensive and accurate data about plant growth.
Therefore, we believe that reasoning about HS data in 3D
will allow us to better analyze plant growth from a nutrient
use+transport+accumulation perspective.

C. Hyperspectral 3D Reconstruction

HS 3D reconstruction is an understudied area, with only
6 papers to the authors’ knowledge addressing it directly. In
[22]-[25]], RGB-only data is used to create 3D pointclouds,
onto which 2D HS images are projected. This does not allow
insight as to the HS radiance densities inside the plant. In
[26]], [27]], separate (grayscale) 3D pointclouds are made using
each HS band then fused together. Since different organs have
different reflectance properties in different wavelengths, many
wavelengths may have incomplete or failed reconstructions
which limits the accuracy of this late-fusion approach. In [28],
a HS structured-light capturing system is created which en-
ables direct generation of a HS point-cloud, but this approach
is highly customized.

It is our belief that a HS 3D reconstruction approach using
NeRF techniques can produce more complete HS reconstruc-
tions including of internal structures, which will enable more
detailed modeling of plant nutrient uptake, transport, and ac-
cumulation. [8] is the closest work to our proposed approach,
which uses an MLP implicit representation to perform 2D HS
super-resolution, but does not extend to 3D, possibly due to
the lack of a suitable dataset and benchmark.

III. APPROACH

In this work, we will perform hyperspectral 3D recon-
struction, that is: 3D reconstruction using hyperspectral im-
ages to obtain point clouds where each point specifies the
intensities of ~128 wavelengths. We will collect preliminary
data, qualitatively assess the data from pseudo-RGB images,
and validate that the images are of sufficient quality by
generating 3D reconstructions from the pseudo-RGB images.
In the future, we will implement baseline approaches for full
3D hyperspectral reconstruction and implement our proposed
NeRF-based solution.

A. Preliminary Data Collection

We seek to collect a preliminary dataset consisting of 50
hyperspectral images from various viewpoints for each of 3
plants of varying species. The images will be taken using
the SOC 710-VP hyperspectral camera from Surface Optics.
Due to the long exposure time (23s-3min), we are limited
to this small preliminary dataset. Additionally, we will use a
manually positioned tripod to take the images to ensure that the
camera remains stable for the duration of each exposure. The
50 images will be taken as 2 full “rings” (roughly 30° per yaw
update) at different elevations (elevations will vary depending
on plant species ). For each ring, the camera will remain
stationary and the plant will rotate on a servo-controlled
turn-table to provide partial ground-truth information for the
camera poses. 4 different plants (of different species) will be
used for 6 image sets to capture a variety of plant structures
and nutrient concentrations.

Figure (1| depicts the imaging setup.



Fig. 1. The imaging setup with SOC710-VP hyperspectral camera (on the
right of each image) and the turntable visible as the black circular platform
supporting the each plant. The two images show the two camera elevations
used for the “rings”. The top image shows a lettuce plant and the bottom
image a basil plant.

B. Pseudo-RGB

We produce pseudo-RGB images by taking the appropriate
wavelengths from the hyperspectral data to use as the red,
green, and blue channels respectively. Although we could in
principle use a weighted average based on common camera
filter spectra, we find that using a single wavelength channel
for each of the R, G, and B channels produces sufficiently
informative images. We choose to use 620nm, 555nm, and
503nm for red, green, and blue respectively.

C. Pseudo-RGB 3D Reconstruction

We validate the quality of the images by creating 3D recon-
structions from the pseudo-RGB data. Under the assumption
that the selected wavelengths for the R, G, and B channels are
representative of the other wavelengths in the hyperspectral
data, successfully generating 3D reconstructions from the
pseudo-RGB data would indicate that the hyperspectral data
is of sufficient quality to generate full 3D reconstructions
including all the wavelengths. We use the open-source, off-the-
shelf COLMAP [29], Structure-from-Motion package.

D. Preliminary Baseline Data Analysis (Future Work)

To establish the quality of existing hyperspectral 3D recon-
struction methods, we will implement the approaches from
and [27]. The results will be compared qualitatively
and quantitatively. We will seek to compare the hyperspectral
responses of the points in the point cloud to the known
reflectances of different nutrients and to the known nutrient

concentrations of different organs of the plants. Because
existing hyperspectral nutrient estimation approaches often
require extensive calibration against a reference dataset of
plants from the same species, inter-species comparisons may
be less meaningful than comparisons amongst different plant
organs of the same plants. The significance of hyperspectral
3D reconstruction over traditional hyperspectral nutrient esti-
mation may be supported by inter-organ comparisons.

E. Preliminary NeRF Data Analysis (Future Work)
I hypothesize that:

1) NeRF will enable us to achieve more accurate hyper-
spectral point clouds specifically for the wavelength
bands that are transparent or translucent in plants.

2) NeRF will enable us to estimate the inner structure of a
plant, since certain plant organs are typically translu-
cent in certain wavelengths, and NeRF is capable of
reasoning about translucency thanks to its differentiable
rendering in training.

To test this hypothesis, we will implement and test hyper-
spectral NeRF on the 3 preliminary datasets. We will compare
the comprehensiveness of the reconstructions as compared to
the baselines (in all the wavelengths), compare the noise-
levels of all the reconstructions, and qualitatively inspect the
reconstructions to see if NeRF is able to reconstruct the inner
structure of the plants.

IV. RESULTS & DISCUSSION

In this section, we present the hyperspectral dataset we
collected, pseudo-RGB images from the dataset, and 3D
reconstructions using pseudo-RGB images from HS data.

A. Hyperspectral Data

Overall, we qualitatively observe that the images collected
by the hyperspectral camera are of good quality and appear
to be sufficient for 3D reconstructions. They appear to be of
sufficient resolution to make out structural details in the plants.
They also have minimal distortion and relatively low noise.
However, images at longer wavelengths are slightly out-of-
focus. Additionally, the exposure time of each image was very
long ( 2.5 minutes/image) (see Section for more details).

An example hyperspectral image is visualized in Figure [2]
Each hyperspectral image in the dataset contains 128 wave-
lengths at 696x520 resolution, making it a 128x696x520 tensor
which is commonly referred to as a hyperspectral “cube” in
the hyperspectral camera industry.

We can observe in Figure [2] that the lower wavelength
images are sharper than the higher wavelength images. Despite
best efforts to calibrate the focus of the camera during data
collection, it was not possible to achieve perfect focus for all
wavelengths. This is further discussed in [V-C|

To compensate for the emission spectrum of the light source
(which is meant to imitate “sunlight”), we can use a standard
color calibration board (Figure [3) or compare the brightness
of the plants against the background, which can be assumed
to be gray. Limitations are discussed in Section [V-A]
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Fig. 2. A depiction of a hyperspectral “cube” making up a single hyperspectral
image in our dataset. A subset of 7 of the 128 wavelengths are shown, as well
as a pseudo-RGB image generated by taking the 620nm, 555nm, and 503nm
wavelengths for the red, green, and blue channels respectively.
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Fig. 3. A hyperspectral image of a color calibration board to compensate for
the emission spectrum of the light source.

B. Pseudo-RGB Images

To establish a proof-of-concept for using hyperspectral data
for 3D reconstructions, we create pseudo-RGB images to
feed into standard, off-the-shelf Structure-from-Motion (SfM)
packages. We reason that the quality of the 3D reconstructions
in the R, G, and B wavelengths should be representative of
the quality of the 3D reconstructions in the other wavelengths,
since we can observe in Figure [2] that the image quality
remains consistent until the very longest wavelengths.

The pseudo-RGB images are created by taking the 620nm,
555nm, and 503nm wavelengths from each hyperspectral
image for the red, green, and blue channels respectively
of a standard RGB image. Figure [4] shows a selection of
pseudo-RGB images from our dataset and conveys the camera
viewpoints imaged for each plant.

One observation that can be made (easier to recognize in
video form than in image-mosaic form) is that the lettuce and



basil plants noticeably wilted throughout the duration of data
collection ( 2 hours/plant). This can be partially attributed to
the laboratory environment and inability to carefully control
soil moisture, but is also a fundamental limitation of the long
image exposure time ( 2.5 minutes/image, see Section [V-DJ.

C. 3D Reconstructions

The 50 RGB images for each plant are fed into COLMAP
[29], [30]: an off-the-shelf open-source SfM package. Two
example resulting 3D reconstructions are shown in Figure [3]
Some background outlier points were manually removed, but
could be automatically removed in the future using a similar
algorithm as the one in [10]]. Qualitatively, the outliers were
easy to identify based on their physical separation from the
rest of the points in the point cloud (e.g. use DBSCAN) and
based on their color: a large proportion of outliers were not
green in color.

The 3D reconstruction quality is very good and suggests
that the reconstruction quality using the full hyperspectral data
should be good as well. The camera poses, which are required
for NeRF, are also expected to have low error given the high
quality of the reconstructions. Quantitative verification based
on the fact that the turntable gives us partial ground truth data
(relative pose/orientation is fixed for each ring, except for one
rotational angle which changes by exactly 15°/image) can also
be done in the future.

One observation is that the topmost leaves of the basil plant
(Figure [3] right) appear to be less well reconstructed than the
rest of the plant. This is suspected to be due to the plant wilting
throughout the course of the data collection, especially these
leaves, violating the assumption that the plant subject is static
across the images.

V. LIMITATIONS & FUTURE WORKS

There are several limitations that we have discovered in the
course of this work, some due to our methodology and others
due to fundamental limitations of current hyperspectral camera
technology.

A. Light Source Spectrum Calibration

The standard Pantone color calibration board used for color
calibration is only intended for RGB calibration and does
not guarantee particular reflectances in the full hyperspectral
sensor range. Our dataset contains calibration images of a
standard Pantone color calibration board and of an 117x8.5”
AprilCal calibration board [31]].

One standard method of calibrating the light source spec-
trum is to use a spectrometer to measure the light source
spectrum and then use that spectrum to generate a light
source spectrum image. However, the camera itself may not
be perfectly calibrated so its readings may differ slightly from
the spectrometer’s.

Another standard method is to use a standard ‘“gray” re-
flectance cube which reflects a known percentage of light
evenly across a certified range of wavelengths. This has the
added benefit of compensating for any camera sensor mis-
calibrations.

B. Non-Lambertian Reflectance

A phenomenon related to light spectrum calibration is that
of non-Lambertian reflectance, whereby the reflectance of a
surface is not constant across all angles. This is a common
phenomenon in plants, where the reflectance of a leaf may be
different depending on the angle of the light source. This is
a fundamental limitation of hyperspectral imaging, and is not
specific to our work, but must nonetheless be considered when
attempting to use hyperspectral imaging for nutrient estimation
and structural analysis.

Several methods in the computer vision literature have been
proposed to address this issue, including in NeRF in which the
color and opacity of a point in space is a function of not only
the point’s position but also the view direction ray (camera
view angle).

C. Wavelength-dependent Focus

This is due to an effect similar to chromatic aberration,
whereby the dependence of refractive index on wavelength
causes a lens to focus different wavelengths of light differently.
Therefore, it is impossible to keep all wavelengths of light in
focus simultaneously. This has been confirmed by the camera
manufacturer to be a fundamental limitation of the technology.

One approach is to use a smaller aperture, which has the
effect of increasing the depth-of-field and thereby decreasing
the amount any part of the image is out-of-focus. Unfortu-
nately, this also increases the exposure time and/or decreases
the SNR, which is already long to begin with (see [V-D).

Another approach is to find better material lenses or use
focusing mirrors, but these tend to have more restrictive fields-
of-view. The SOC710-VP camera we use in this work already
has one of the widest fields of view of any camera on the
market and has a field-of-view of just 11.4°, requiring the
camera to be more than a meter away to capture a full plant.
For the automated imaging robot described in [10f], this is
unacceptably narrow as is, and traditional optics with less
chromatic aberration would likely only exasperate this issue.

Finally, the last approach is to use lower-level sensor
mechanisms. The SOC710-VP camera and many similar
field-oriented hyperspectral cameras have internal mechani-
cal mechanisms to capture images through a “pushbroom”
mechanism that captures one-line of the image at a time. We
could instead use lower-level mechanisms and scan ourselves
to alleviate lensing and field-of-view issues, but this would
require a custom-built camera and would be prohibitively time
consuming.

D. Exposure Time

The long exposure time causes challenges in throughput and
accuracy. Throughput is obviously reduced because imaging
a single plant takes prohibitively long as it currently stands,
even for a robotic imaging system. At 2 hours per plant, only
12 plants could be imaged in a 24 hour period which is too
small a sample size to be scientifically useful. In terms of
accuracy, plants change appreciably over the course of hours
every day, due to growth and circadian cycles. The assumption



Fig. 4. A selection of pseudo-RGB images of basil (left) and rosemary (right) from our dataset are shown to illustrate the different view angles imaged for
each plant. For each plant, the left and right columns display images from the 2 different “rings” (elevations) described in Section [[lI-A] Pseudo-RGB images
are generated by taking the 620nm, 555nm, and 503nm wavelengths for the red, green, and blue channels respectively.




Fig. 5. Visualizations of the 3D reconstructions of rosemary (left) and basil
(right) plants from pseudo-RGB data.

that the plant is static across images appears to still be mostly
reasonable in our dataset, but certainly becomes less valid
for more leafy plants (e.g. lettuce) and is somewhat visible
in Figure [5] where the top-most leaves of the basil plant
(which visibly moved due to wilting) appear to be less well
constructed than the rest of the plant.

The exposure time of the camera is long, requiring
2minl4sec per image. This is due to the tradeoff between
spatial, spectral, and “temporal” resolution of hyperspectral
cameras. With a fixed imaging sensor size, the imaging sensor
must be exposed longer to receive enough photons to produce
a large enough SNR. This is especially challenging for the
higher wavelengths due to the IR noise from the camera’s
internal components (e.g. black body radiation). As compared
to RGB cameras, hyperspectral cameras need many more sen-
sor pixels to sense more wavelengths. With a fixed sensor size,
scene, and optics, it is not currently possible to simultaneously
have high image resolution (spatial), many wavelength bands
(spectral), and short exposure time (temporal).

One approach is to increase the aperture size to let in more
light, but we already established in[V-C|that this is problematic
due to chromatic aberration.

Another approach is to illuminate the scene with stronger
lights. This is certainly possible to a point, but too much
light can burn the plants or affect the scientific experiment
by providing the plants with more light than controlled-for.
Under strong daylight conditions, the exposure time should
theoretically be able to be reduced to around 30seconds, which
may or may not be achievable in our controlled experimental
testbed. Even 30 seconds is still long, requiring around half-
an-hour per plant, and applying full-daylight conditions may
cause more plant movement during imaging.

VI. CONCLUSIONS

In this work, we collected a preliminary dataset of hy-
perspectral images and performed 3D reconstruction, towards
creating full hyperspectral 3D reconstructions to better model
how nutrient distribution and flow affect plant growth.

We found several challenges associated with hyperspectral
imaging technology, including long exposure time, chromatic
aberration, and narrow field-of-view. However, we found that
the quality of the images, once captured, were sufficient to
generate 3D reconstructions from pseudo-RGB images.

We anticipate that we will be able to successfully generate
full hyperspectral 3D reconstructions using this preliminary
dataset, and that we will be able to see structural differences in
reflectance spectra between different plant organs and species.
Finally, we anticipate that a future full dataset, containing
a larger sample size and ground-truth nutrient concentra-
tions, would enable us to estimate nutrient concentrations
in plants more comprehensively than existing hyperspectral
approaches.
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