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Abstract— We present GTGraffiti, a graffiti painting system
from Georgia Tech that tackles challenges in art, hardware, and
human-robot collaboration. The problem of painting graffiti
in a human style is particularly challenging and requires a
system-level approach because the robotics and art must be
designed around each other. The robot must be highly dynamic
over a large workspace while the artist must work within
the robot’s limitations. Our approach consists of three stages:
artwork capture, robot hardware, and planning & control. We
use motion capture to capture collaborator painting motions
which are then composed and processed into a time-varying
linear feedback controller for a cable-driven parallel robot
(CDPR) to execute. In this work, we will describe the capturing
process, the design and construction of a purpose-built CDPR,
and the software for turning an artist’s vision into control
commands. Our work represents an important step towards
faithfully recreating human graffiti artwork by demonstrating
that we can reproduce artist motions up to 2m/s and 20m/s>
within 9.3mm RMSE to paint artworks.

I. INTRODUCTION AND RELATED WORK

Spray painting graffiti art in a human style is an important,
open problem that requires a systems approach. In this paper,
we take the first step towards creating a system that can
capture human graffiti artwork and collaborate with artists
to create new and copied artworks in the public settings that
define graffiti. In addition to the well-established sociological
motivations for reproducing graffiti art [1], robot art is intrin-
sically motivating for its marriage of art and technology. By
possessing physical abilities beyond those of its collaborating
artists, a graffiti robot could reveal new artistic avenues
highlighting human-robot collaboration for disabled [2] and
able-bodied artists alike. To act as the hand of an artist
poses inherently interconnected problems in art, hardware,
control, and human-robot interaction. Furthermore, the tech-
nology required to produce the large-scale, dynamic motions
required for graffiti has applications in warehouse/industrial
logistics [3], agriculture [4], construction [5], [6], and motion
simulation [7]. Creating graffiti art with a robot requires (1)
capturing the motions of artists painting, (2) creating a robot
that can achieve comparable motions to human artists, and
(3) implementing algorithms that would allow the robot to
execute on the artists’ visions. Despite considerable progress
in each of these tasks, to our knowledge, no system has been
demonstrated to achieve all three.
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Fig. 1.

Our system captures artist painting motions of individual letter
outlines which are composed and processed into controls for a cable robot
to execute. Our system produced this painting of the letters “ATL” (Atlanta).

Prior work exists in capturing graffiti art, most notably the
Graffiti Markup Language (GML) project [8]. Although the
project has been successful in generating a large library of
graffiti artwork, almost all the data was captured from digital
interfaces (e.g. stylus) rather than full-body painting motions.
This is problematic because an artist’s creative process may
differ between virtual and physical mediums and because
ignoring the physical painting motions neglects the challenge
of generating robot trajectories. An exception is the GML
Recording Machine [9], though it captures only 2 degree of
freedom (DoF) planar motion.

Robots developed for spray painting have seen consid-
erably more attention. Serial arm manipulators and gantry-
based systems are precise and mature, but arms do not scale
well to large workspaces [10], [11] and gantry-based systems
exhibit a tradeoff between size and portability [12], [13].
Mobile manipulators address these issues, but are currently
not as dynamic or precise as human artists [14]. Aerial robots
are popular for their ability to paint otherwise inaccessible
walls, but have been cited as being difficult to accurately
control due to susceptibility to disturbances and compar-
atively limited acceleration capabilities [15]-[18]. Cable-
based systems appear to be promising, but so far [2], [19]
have only demonstrated raster- or stippling- style painting
while [20] has not demonstrated the highly dynamic motions
employed by human artists.

Finally, despite prior research in robot control and artistic
composition, the software to enable graffiti painting does not
currently exist. CDPR control (further discussed in Section
IV-A.3) is relatively well understood, but has not been
demonstrated for dynamic graffiti trajectories. Research on
industrial painting robots has thoroughly studied paint dis-
persion and trajectory generation, but is primarily concerned
with uniform coats on curved surfaces in contrast to graffiti
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Fig. 2. This system overview depicts the capture, hardware, and planning
& control components of our system.

art’s non-uniform coats on flat surfaces [21]-[24]. Berio is
notable for his research in graffiti composition and stylization
[11], [25]-[27], but focuses on digital rendering as opposed
to producing trajectories.

We argue that the problem of creating graffiti artwork
is sufficiently expansive and its components codependent
that it requires a system-level approach. In this work, we
propose a novel system towards creating graffiti artwork
by improving and coordinating the capture, hardware, and
software requirements. Fig. 1 depicts an example result of the
GTGraffiti system summarized in Fig. 2. Our contributions
include:

o capturing a library of 6DoF trajectories for creating

graffiti artwork using motion capture (mocap),

o designing, building, and testing the hardware for a
purpose-made robot platform to paint graffiti,

e proposing a planning and control pipeline to realize
high-level artistic descriptions into motor torque com-
mands, and

o demonstrating a system that can paint human-style
graffiti artwork.

II. CAPTURE

The capture process is important for both learning the
motions to produce graffiti art and establishing robot capa-
bility requirements. As such, our capture process is focused
on obtaining the most artistically meaningful data while
omitting less relevant data. In this work, we collect a library
of simple, composable shape outlines.

A. Design Considerations

We first capture artwork using an OptiTrack™ mocap
system for its simplicity and accuracy. Mocap systems have
the advantage of directly outputting positions and orienta-
tions of rigid bodies with sub-millimeter accuracy which
trivializes the process of obtaining the 6D trajectories of a
spray paint can during painting. As we will discuss in Section
IV, the processing and rendering components of our pipeline
can optionally use other forms of captured artwork such as
Scalable Vector Graphics (SVG) and GML files in addition
to mocap data. Conversely, later sections will also discuss
aspects of the artist motions captured with mocap which are
beyond the robot’s capabilities (e.g. 6DoF vs planar motion).

We opt to capture only the outlines of shapes and omit
the infills because, according to an artist collaborator, the
particular pattern used to fill-in a shape is largely arbitrary
and algorithmically generating one does not significantly
detract from artistic value. Furthermore, the easiest infill path
for a human may not be the easiest for a robot.
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Fig. 4. (a) Captured shape outlines for the letters “ABCDE” by our two
collaborating artists. (b) Speeds and accelerations of a human graffiti artist
during painting which help inform minimum requirements for the robot.

B. Approach

We collected the full 6D trajectories of the spray cans
and painting surfaces (plywood sheets) as two graffiti artist
collaborators painted. Four mocap position markers were
affixed each to the can (as shown in Fig. 3) and painting
surface to extract the 6DoF poses for each time step at
120Hz. For each art collaborator, the 26 letters of the English
alphabet were captured along with special symbols such as
punctuation marks and small doodles (e.g. skull). We convert
the pose of the spray can nozzle to the painting surface’s
reference frame using coordinate transformations. Additional
details can be found in our accompanying arXiv paper [28].

To determine when the spray nozzle is being depressed
(painting vs traveling motions), we applied a number of
heuristics for each candidate painting motion segment in-
cluding distance between start and end points (assuming
outlines are closed curves), maximum speed, arc length, non-
maximum suppression, and manual annotations.

C. Results

Fig. 4a shows an example of our data by plotting the spray
can nozzle translations. The fact that the data was collected
while the artists were physically painting combined with the
accuracy and 6DoF of motion capture gives our data the
potential to better understand the nuanced motions of human
graffiti painting e.g. biomechanically and with respect to can
speeds, distances, and orientations.

We also study the speeds and accelerations reached by our
collaborating artists during painting and traveling to inform
the requirements of the cable robot, reasoning that a robot
capable of these speeds and accelerations should be capable
of reproducing the artworks. From Fig. 4b we estimate a
speed of 6m/s and acceleration of 50m/s? to be sufficient to
paint human-style graffiti artwork.



D. Discussion & Limitations

Although motion capture’s accuracy is unparalleled, there
are several drawbacks. Most notably, cost and setup hinder
the accessibility and mobility of capture systems. We were
only able to capture motions in a controlled laboratory setting
which limits the realism of the artwork. Additionally, human
artists can move so fast that, even at 120Hz, our mocap
system misses some detail.

The ability to capture nozzle actuation was also limited
since we were unable to directly record actuation force
which artists use to allow better paint control. During data
collection, an additional marker was actually placed on the
tip of the artist’s index finger to aid in identifying when the
spray can nozzle was depressed. Upon analyzing the data,
however, this was not found to be a consistent method of
annotating binary nozzle actuation let alone actuation force.
Even with various heuristics, manual annotation was needed
to correct misclassifications in nozzle actuation.

Additional tags, characters, and full murals with pho-
tographs will be added to the library in the future.

III. ROBOT HARDWARE

Given the design requirements for painting graffiti based
on human spray painting data, we believe that a CDPR is an
ideal platform. In this section we detail our robot hardware.

A. Design Considerations

The primary design requirements for a graffiti painting
system involve workspace size, maximum end-effector ve-
locity, and maximum end-effector acceleration. We seek a
platform which can be scaled to a workspace 20mx20m or
larger, though in this work we only seek a demonstration
sized at a few meters. Based on the analysis presented in
Section II-C, we determined that we require 6m/s and 50m/s?
of speed and acceleration, respectively. Assuming the mass of
the spray can and actuating accessories do not exceed 2kg,
including gravity the robot should be capable of exerting
120N upward and comparable forces in other directions.

Secondary design requirements include portability, accu-
racy, and stiffness. It should be feasible to disassemble
and reassemble the robot on-site at the wall of a building.
Accuracy and stiffness are considered secondary constraints
because, compared to art forms such as brush painting or
sculpture, graffiti is less sensitive to positional inaccuracies
and experiences less reaction force. Based on the thickness of
a line painted with a “needle” nozzle 5cm from the painting
surface, we estimate 2.5cm of repeatability to be sufficient.
We estimate an accuracy of 1% the size of the painting to
be sufficient, based loosely on [29]. We estimate external
disturbances to be negligible based on paint reaction forces
and historical Atlanta wind speeds.

CDPRs present ideal platforms for graffiti painting given
the aforementioned requirements. A CDPR is a robot whose
end-effector is pulled by a set of cables which are driven
by winches on a fixed base. Due to properties of cables,
CDPRs can scale to extraordinary sizes and speeds [30],
[31], albeit with reduced stiffness. These qualities make them
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Fig. 5. Our planar CDPR has a 4-cable, rectangular configuration with the
end-effector in the center carrying the spray paint can.

Fig. 6. Our cable robot (left) includes an end effector that carries the
spray paint and actuator electronics (center) and 4 winch assemblies, each
consisting of a shared motor controller, motor, and helical winch (right, x2).

ideally suited to the large but relatively undisturbed setting
and modest accuracy requirement of graffiti painting.
CDPRs also have an active research community which
has solved many challenges in workspace analysis [32]—
[34], control, and estimation (further discussed in Section
IV-A.3). Preliminarily, based on [3], we estimate a 1kHz
update frequency to be necessary for real-time control.
Finally, we define the requirements to actuate the spray can
nozzle. For a full can of Montana BLACK 400mL, the force
required to depress the nozzle was measured to be 27N and
the displacement was measured to be 2mm. Other 400mL
spray cans by the brands Montana, Hardcore, and Kobra were
found to have similar actuation forces and displacements.

B. Approach

Our CDPR uses 4 cables in a planar configuration to exert
pulling forces on the end effector via 4 motor-driven winches
(see Fig. 5). The end effector was built to be lightweight
and carry the spray can and actuating electronics. It has 4
mounting points to connect to the 4 CDPR cables. The cables
are low-stretch and lightweight (cable sag is negligible). The
spray can nozzle actuating mechanism is wireless, battery-
powered, and implemented using a servo with the lever-arm
mechanism from [35]. Complete design details can be found
in our accompanying arXiv paper [28].

C. Results

Our assembled robot is pictured in Figures 1 and 6. The
winches satisfy our design requirements with each being
capable of pulling a 2kg mass on the cable up to 7.6m/s
and 94m/s? and bidirectionally communicating at 1kHz. The
end-effector and spray can actuating mechanism are also
pictured in Fig. 6. The total mass varied between 1006g
and 1317g depending on the spray can. The spray can
actuating mechanism was able to successfully depress the
spray nozzle 100% of the time in a trial of 100, 1 second
long actuations. The latency from commanding to dispensing
paint was measured to be 400ms.



D. Discussion & Limitations

We are able to paint well, as in Fig. 1, despite not being
able to use our 6DoF captured data to its full potential since
we are limited to planar motion. Also, we will discuss in
Section IV-C.2 that the paint limits us to a maximum speed
far below what the hardware is capable of (and the speed
suggested by Fig. 4b). A combination of hardware upgrades
and intelligent paint modeling and optimization are likely
necessary to leverage our system’s full potential, especially
actuation to move the nozzle closer to the canvas.

IV. PLANNING AND CONTROL

From an artist’s input, we must control the robot to paint.
We use a hierarchical approach with 3 levels:

1) Path Generation: turn the artist’s vision into a mathe-
matical description

2) Trajectory Generation: find a trajectory within the
robot’s capabilities while respecting the artist’s vision
to the maximum extent possible

3) CDPR Control: execute the trajectory online

The interplay between the trajectory generation and CDPR
control merits a summarized precursor explanation for clar-
ity. During the trajectory generation phase, the optimal con-
trol problem of tracking a desired trajectory is solved offfine.
The iterative Linear Quadratic Regulator (iLQR) method [36]
— iterating by applying the linearized system and control law
forward in time to obtain a new linearized feedback law — is
used to solve the optimal control problem. The feedback law
from the final pass can then be used as the online controller.

A. Design Considerations

1) Path Generation: In this work, the artist composes
artworks using the shapes in the shape library as a first step
towards more general artistic descriptions. Given an artist’s
specification for the placements of shapes from the library
of captured art, we seek to generate the paths, in the form
of Bézier curves, that the spray can must follow. This is a
system-level problem because it requires suitable captured
data, well-planned and modeled robot capabilities, and clear
artist desires. We divide path generation into (1) outline,
primarily a human-robot interaction problem, (2) infill, a
coverage path planning problem, and (3) travel, a problem
of filling in discontinuities. The latter two are unique to
our system approach because, recalling the reasoning from
Section II, only outlines are captured for the shape library.

2) Trajectory Generation: To create a physically realize-
able trajectory that is as similar as possible to the artist’s
vision, we first discretize the path at 100Hz to obtain a direct-
from-artist trajectory, x; (within speed and acceleration
limits), then apply an offline iLQR-based optimization to
obtain a smoothed reference trajectory, x s, control signal,
uyy, time-varying feedback gains, K, and paint timing.

Loosely inspired by [26], the iLQR-based optimization is
used to strike a balance between the artist’s intent and the
ease of controlling the robot. We express the iLQR problem
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Stylization from iLQR Q vs R also observed by [26]

in discretized form with time index k as:

T
T, ug = arg min > &[] Q&E[k] + alk]” Ralk] (la)
Tu

s.t. zlk + 1] = f(x[k], ulk]), (1b)

x[0] = xq (1¢)

where Z[k] = x[k] — x4[k] is the deviation of the state
x[k] from x4[k]: the artist’s intended trajectory, @[k] =
ulk] — w,, is the deviation of the control w[k] from

U, the average of the minimum and maximum allowable
torques [37], [38], s and uyss are the smoothed reference
(nominal/feedforward) state and control signals, () and R are
the state objective and control cost matrices, f(xz[k], u[k])
defines the nonlinear system dynamics, and x is the initial
state. The state consists of the cartesian position and velocity:
xr = [ v Dy Dz py], where p denotes the position of
the spray can’s nozzle. The control v consists of the four
motor torques. Section IV-C.3 experimentally justifies why
orientation is omitted.

Intuitively, the state objective matrix, ), advocates for
the artist and the control cost matrix, R, penalizes being
near torque limits. Interestingly, as discovered by [26], the
relationship between () and R can also be interpreted as an
artistic parameter as visually depicted in Fig. 7.

3) Control: We seek a controller that can control the
cable robot to achieve motions comparable to a graffiti artist
(requirements are the same as in Section III-A).

Our cable robot controller is inspired by prior works.
CDPR control places emphasis on “tension distribution”
(TD) which is analogous to redundancy resolution in serial
manipulators [3], [7], [37], [39]-[43]. These approaches
typically use or assume a feedback controller whose control
variable is a task space wrench. The TD algorithm then
computes the optimal motor torques (or cable tensions)
required to achieve the desired task space wrench.

However, since we are using an iLQR-based optimizer,
which produces locally optimal control laws as described
in Section IV-A.2, most aspects of control (including TD)
have been shifted offline. Our online controller is then a
simple linear feedback controller, as depicted in Fig. 8.
Mathematically, our controller can be expressed as:

T =K(t) (@ (t) — &)+ ug(t) 2

where 7 is the 4-vector of motor torques, & is the measured
state, and K (t) is the 4x4 time-varying gain matrix.

To compute &, we need to estimate the position and veloc-
ity of the spray can well enough to achieve our repeatability
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Fig. 8. CDPR controller block diagram, where u ff> Tfs and K are pre-
computed offline using an iLQR-based optimizer implemented in GTSAM.

and accuracy requirements. Nonlinear least squares solvers
are commonly used for CDPR state estimation, but we will
show that a simpler solution is sufficient for our application.

B. Approach

1) Path Generation: When generating the outline, the
largest challenge involves communicating the artist’s intent
and robot’s capabilities between the artist and computer. In
this work, we apply constraints to the artist when they are
specifying their artistic vision. To constrain the canvas size,
we use a rectangular approximation of the wrench feasible
workspace (WFW) [33], [34] to define the space in which
the artist may place library objects. To constrain layering
specifications, we impose a strict layering of shapes such
that each shape is either entirely on top of or entirely beneath
another. Due to our robot’s planar limitation, we project the
nozzle position for each frame from the mocap data onto the
painting surface to form an ordered set of 2D line segments
(allowing us to retain velocity information to be used during
trajectory generation). Data sources other than our mocap
library can be used but require velocity data.

To infill the shapes we apply an exact cellular decompo-
sition and use a standard horizontal “zigzag” path within
each cell [44]. Similar to the way each artist chooses a
strategy for infilling based on personal preference (according
to our artist collaborators), we choose this pattern for its
ease of implementation and actuation: in most configurations
our robot has the best control authority horizontally. Further
details on the way we decompose the infill and compute
the exhaustive walk to reduce nozzle actuation cycles are
provided in our accompanying arXiv paper [28]. For each
object, we paint the infill in the face color then the outline
in the outline color. Instead of applying a hidden line removal
algorithm [45], we simply finish painting each object before
the next is started.

Finally, travel strokes must be added to make the path
continuous in position. Although making the paths continu-
ous in direction is an option (as in [20]), we opt to allow
discontinuous directions but enforce continuous velocity in
the trajectory generation stage. For every pair of strokes, we
add a straight line from the end of the previous stroke to the
start of the next stroke if they are not already coincident.

2) Trajectory Generation: Unique to the system-level
approach, we discretize outlines and infill/travel strokes dif-
ferently due to the different ways the paths were generated.

For outlines, we have velocities from mocap data so we
need to apply time-scaling. We compute the original path’s
speed and acceleration using finite differences assuming each
line segment takes 1s, then apply the linear transformation,
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Fig. 9. Factor graph depicting the iLQR problem using plate notation.
Circles represent variables to be solved while dots represent objectives
or equations. l;, [;, and I; represent cable length, speed, and acceleration
respectively. ¢;, 7;, and F; represent cable tension, motor torque, and the
wrench on the end-effector caused by cable 4, respectively. 7', V, and V
represent end-effector pose, twist, and twist-acceleration, respectively.

t' = ct, to match a predefined maximum speed and/or
maximum acceleration and sample x(¢') from the path at
100Hz. We choose limits of 1.2m/s and 20m/s? based on the
spray paint dispersion described further in Section I'V-C.

For the infills and travel strokes, we need to generate
rest-to-rest trajectories with continuous velocities. We choose
trapezoidal velocity profiles for their popularity in industrial
applications [46] with limits of 0.5m/s and 20m/s? (based on
spray paint dispersion).

The iLQR-based optimization of (1) is performed offline
using factor graphs and the GTSAM software library, but
any iLQR implementation can be used. The system dynamics
constraints (1b) are drawn from prior works in CDPR control
including the standard equations for kinematics and cable
tension/wrench equilibrium [37], winch model dynamics [3],
[42], rigid body dynamics [42], and numerical integration
[47], [48]. The iLQR problem is then expressed as the
factor graph [49]-[51] shown in Fig. 9 and solved with the
GTSAM software library using Levenberg-Marquardt and
variable elimination. The solution gives x ¢ and w sy, while
the Bayes Net obtained by the final iteration’s elimination
step contains the locally optimal feedback gain matrix, K.
Because we compute z ¢, uys offline, we do not need a full
workspace analysis since we can check offline if u ¢ is within
the control limits. Full details on the equations and factor
graph are available in our accompanying arXiv paper [28].

3) Control: First we interpolate K, x s¢, and u s since the
trajectory generation phase was discretized at 100Hz while
the controller runs online at 1kHz. K and uys are interpo-
lated using a zero-order hold, while x ¢ is interpolated using
a first-order extrapolation from the most recent discrete  y;.

To estimate position we discard redundant information and
to estimate velocity we use a linear least squares solution. We
discard the bottom two cable lengths then apply trigonometry
using the top two cable lengths to estimate the spray can
position assuming the spray can is always vertical. To
estimate velocity, we solve tl%e linear least squares problem:
p = i~ wTp| = WP where W is the
wrench matrix [42] and - T is2the Moore-Penrose left inverse.

We also employ an offfine calibration whereby a rect-
angular trajectory is run while collecting mocap and robot
log data. A nonlinear least squares optimization is used to
compute pulley locations and coefficients for cable length
scaling which are hard-coded for subsequent runs.

arg min,,




C. Results

1) Path Generation: Fig. 10 shows an example result.

2) Trajectory Generation: The speed and acceleration
limits were tuned for our painting distance of around 12cm.
The outline limits of 1.2m/s and 20m/s? were tested using
the Montana “Skinny Cap Beige” nozzle and the infill limits
of 0.5m/s and 20m/s? were tested using the Montana “flat
jet cap wide” nozzle. Faster speeds resulted in incomplete
coverage while slower speeds resulted in “dripping”.

The offline iLQR-based optimization has O(n) complexity
and runs at approximately half real-time (e.g. a 1-minute
trajectory takes 2 minutes to optimize). We chose Q =
diag([le4,1e4,0,0]) and R = I4,4 as a balance between
tracking accuracy and stability.

3) Control: To evaluate our control stage, we use mocap
for ground truth data and log s and & from the robot at
100Hz for a challenging 2m/s and 20m/s? trajectory with
sharp corners (Fig. 11). The mocap and robot coordinate
frames were aligned using the 4 pulley locations and the
mocap data was interpolated to match the 100Hz robot log
frequency. The root mean square (RMS) error in control
tracking, estimation, and repeatibility across consecutive runs
is 9.3mm, 3.4mm, and 3.3mm respectively (satisfying the
requirements from Section III-A). We also validate our
assumption that the end effector is always close to vertical,
which is used for online control and estimation, by measuring
the RMS rotation deviation to be 0.45°, 0.42°, and 1.57° in
the horizontal, vertical, and normal directions respectively.
We believe our proposed controller, which precomputes
linear feedback gains offline, is accurate, easier to implement,
and useful for CDPR applications other than graffiti as well.

In addition to the painting in Fig. 1, please refer to our
supplemental video for additional painting results which
qualitatively demonstrate our system’s capabilities. Also see
our accompanying paper [28] for commentary on the quality
of the supplemental video results as compared to Fig. 11.

D. Discussion & Limitations

When specifying an artist’s vision, the space of creative
possibilities is immense. Non-flat overlap topologies [25],
homographies, non-linear, and other 3D perspective trans-
forms have artistic interest but are beyond the scope of this
work. Graffiti stylization [26] and free-form inputs [52] are
also beyond the scope of this work. In return, the artists get
to explore the maxim “Creativity is born from limitations”.

Understanding the nuances of paint dispersion is another
large area of study that is beyond the scope of this paper. For
example, the fact that human artists consistently paint solid
lines at 6m/s yet our robot’s lines begin losing complete
coverage above 1.2m/s suggests a gap in our understanding.
We believe moving closer to the canvas (artists were on
average 3.0cm=+0.lcm from the painting surface vs 12cm
for our robot) and modeling special effects such as flares,
blending, and intentional dripping are logical next steps.

Although our controller is generally reliable and robust to
modeling inaccuracies, we do find some limitations on the
@ matrix. For large @ matrices (||Q|, /[ R|y > 1e6N/m),

Fig. 10. During path generation, we first produce the outline from artist
inputs (left), then infill paths (center), and finally travel strokes (right).
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challenging 2m/s, 20m/s? trajectory.
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the controller resonates with the natural vibrations of the
cable robot causing instability, while for small ) matrices
(1Qlly / | R, < 1e2N/m), the robot gets stuck for a few cm
before overcoming the friction and returning to the setpoint
trajectory. Still, compared to other methods such as [37],
[38], we believe the iLQR method to be easier because it
requires less tuning and modeling effort.

V. CONCLUSIONS & FUTURE WORK

In this paper, we presented a system for painting human-
style graffiti art. Our work contributes to existing research
by bridging three components in a systems approach: cap-
turing artwork, building a graffiti robot, and planning and
controlling the robot for painting graffiti. We illustrated the
co-dependencies of various system design choices which
suggest that future research in robot art should consider
a more holistic approach. We also demonstrated that our
system can successfully produce physical artworks from
captured art. Our work can be applied to graffiti preservation
by recreating captured artwork, to human-robot collaboration
in art by enhancing the physical capabilities of artists, and
to other fields through technology transfer for large-scale
dynamic motion. Avenues for future work include a more
portable graffiti capture device, better communication of
robot limitations to the artist, style analysis and impro-
visation, paint dispersion analysis, real-time human-robot
interaction, a larger workspace, and 6DoF robot motion.
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