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Summary

In this proposed work, three parts to the problem of artistic painting guided by human motions are
addressed: rendering a digital artwork in paint with a cable robot; replicating human input motions as
closely as possible; and adapting human input motions to accommodate for differences in level of detail,
style, and artistic medium according to high-level artist intents. Through the difficult, interaction-rich task
of robot art, modern challenges in human-robot collaboration can be studied. In particular, techniques for
robot motion control through natural input interfaces drawn from human motions are developed. Rendering
paint requires advances in state estimation and control techniques for fast, fluid motions on a cable robot.
Replicating human motions bridges the input motions and robot kino-dynamic capabilities, requiring
advances in optimal trajectory re-timing techniques. Finally, adapting goes beyond rote replication by
augmenting input motions to better fit the composition, style, and medium intended by the robot-artist
team, requiring novel art-specific composition, text- and style- conditioned trajectory generation, and brush
modeling techniques. Put together, the proposed thesis forms a cohesive body of work producing human-
robot paintings and making novel contributions to the fields of robot art, human-robot collaboration, and
cable robot control.
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Chapter 1: Introduction

In striving for ever-deeper human connection, artists
have pushed their crafts to embody the furthest reaches
of human capabilities. From delicate painting motions
to athletic ballet or parkour displays to dextrous musical
performances, the diverse skills in art exhibit the widest
reaches of physical ability and the most famed artists
represent perhaps the most skilled humans in history. In
addition to the pure artistic value of creating embodied
machines that can perform at the highest levels of human
artistry, it stands to reason that the study of robot art must
also bring us closer to enabling robots that can do any
physical task a human could.

To this end, we focus our work on the task of artistic
painting guided by human motions. As further justified
in [l we mainly focus on graffiti spray painting, but also
study brush-based painting and calligraphy.

The choice to ground our robot in human motions is a
both artistic and practical one. From an artistic point of
view, we believe that motion is a much more intuitive,
rich, and expressive form of communication for visual
art than e.g. text, code, or combining artwork. Although
we borrow ideas and techniques from generative Al for
motion adaptation, we focus on the more raw commu-
nication modality of motion. From a practical point of
view, human painting motions are excellent priors for
creating human-like paintings and reproducing motions
that better reflect the goal of creating robots whose
physical abilities are strict supersets of human abilities.

At its core, art is the deepest form of communication,
so studying how humans and robots can work together
to create art is a natural way to study how to create more
intuitive ways for humans to communicate with robots.

I. PROBLEM RELEVANCE: ROBOT PAINTING

Artistic painting presents an excellent robotics task to
study human motion adaptation because: (1) it has social
implications, (2) it is easy to recognize execution errors
but difficult to perform, and (3) there is a strong body
of prior works and a high ceiling.

A. Social Implications

As a form of communication, art has the potential
to shape the way society perceives robots and the way
robots become adopted in society. On a personal note,
I hope to share my view that we should not fear robots
as job stealers or existential threats, but instead embrace
them as the super-powering tools they are, or perhaps
even as “our children” as Marvin Minsky might argue.

Although graffiti is often pictured as an act of vandal-
ism, it is in need of cultural preservation as an important
art form that reflects the voices of disenfranchised popu-
lations. Much of the academic literature has investigated
graffiti through the lens of youth, sub-culture, and the

discourse of the disenfranchised [1]. There has been
enormous shift in the perception of the art form and,
today, graffiti is not only increasingly appreciated by
the society, but there are government funded graffiti
projects and legislative efforts protecting graffiti arts [2].
The inherent ephemeral nature of graffiti makes graffiti
particularly in need of preservation, and the statistically
shorter life expectancy of those disenfranchised popula-
tions active in the graffiti community only exasperates
the need for preservation efforts. As Michelangelo’s
David is eternalized in Stone and da Vinci’s Mona Lisa is
eternalized on poplar panel, we hope that someday the
works of Keith Haring, Fabian “Occasional Superstar”
Williams, and countless other named and unnamed artists
will be immortalized in graffiti recreations.

Heroic efforts to eternalize graffiti by means such
as photographing, capturing via 3D reconstruction, and
motion recording have made great contributions to pre-
serving this valuable art-form, but they do not aim
to recreate graffiti artworks in their native formats: in
paint on buildings, bridges, and other publicly accessible
architectural structures. Paintings on such public displays
present a core identity of graffiti in giving a voice
to those who cannot otherwise be heard. John Morse
captures the importance of public display well:

“People read these bandit signs. And they’ll
read ’em if they’re about an electrician; they’ll
read "em if they’re about anything. If they read
it and they like it, great. If they read it and they
don’t like it, great. But the fact is: they’ll read
it. They’re gonna read your poetry and that’s
my goal: I want people to read my poetry.”

B. Evaluation and Difficulty

Our brains are hardwired to interpret visual artwork,
and we are able to recognize execution errors in paintings
at a glance. Similar to how faces and hands can be very
challenging for generative Al models, painting in general
is a difficult task for robots not only due to the inherent
technical difficulties, but also due to the high threshold
for human acceptance. From an execution perspective
(but not an artistic merit perspective), the ease of qualita-
tively evaluating whether a finished artwork matches the
input intents, combined with our intuitive understanding
for the problems when we see painted lines, make art a
good task to advance robotics. As an example, the lack
of stiffness of cable robots causes oscillations that are
almost imperceptible to the human eye, but which are
clearly revealed in paint as the spray paint can oscillates
in reaction to disturbances. In a more personal anecdote,
I laugh at my own attempts to draw human bodies since,
after stepping back, it is so painfully obvious that the
proportions are comically wrong.



Simultaneously, since many art forms capture the
pinnacle of human physical capabilities — such as park-
our’s athleticism, ballet’s precision, and calligraphy’s
dexterity — creating art is a popular benchmark for robot
skills because it is so difficult. Painting requires fine
motor control and dexterity. Spray painting also requires
highly dynamic motion control since the paint can must
be moved at a precise speed to be dispersed on the
canvas evenly, with human artists regularly reaching
6m/s and 50m/s? [3]. Meanwhile, calligraphy and brush
painting also require modeling of the complex, infinite-
dimensional brush bristles and a controller that can
compute the trajectory of the brush handle required to
produce a desired image on the canvas. Finally, the
embodiment of the robot artist painting in the real world
presents all the usual practical challenges with building
robust robots while also reinforcing social implications.

C. Existing Research Area

Embodied artistic painting is an active research area
in robotics. Brush-based painting in mediums such as
acrylic [4]-[6], ink [7], oil, and water-color [8|] have
sought to create ever-more faithful depictions of refer-
ence photos. Similarly, brush-based calligraphy [9], [10]
aims to devise accurate brush models and optimizers to
produce long, beautiful brush strokes, especially strokes
that have accurate beginning and ending shapes.

Artistic spray painting robots are also heavily studied,
with many different platforms from manipulators [[11] to
gantry-based systems [8]], [12] to mobile manipulators
[13]] to aerial robots [[14]|—[[17]] to cable robots [18[]-[20].
A considerable amount of research is also dedicated to
spray paint dispersion and motion planning for industrial
applications (e.g. automotive painting and coating).

Purely software painterly rendering has also been long
studied, dating back to image-gradient-based sketch-
ification of images [21]] to modern style transfer [22] and
generative diffusion models [23] that can be zero-shot
prompted with any style or medium imaginable. A vast
set of techniques have now been investigated including
greedy stroke-based rendering [24]], deep reinforcement
learning [25]), pixel-based generative models [23], and
many more.

The large activity in the space is driven by the great
potential for improvement. Algorithmically generated
SBRs are still readily distinguishable from a human
painting due to the numerous small strokes and calligra-
phy brush models are currently insufficiently accurate
especially without closed loop feedback. Meanwhile,
spray painted art has nowhere close to the physical or
artistic skills of human artists in terms of stroke varia-
tion and composition. Finally, generating robot painting
trajectories is an important component of embodied Al
painting that is overlooked by pixel-based approaches

such as neural style transfer (NST) and image diffusion
models. The gap between human artists and robot artists
is so great that we can safely plan for many more
years of research in the area of robot painting, and
the skills required to create a robot artist will almost
certainly teach us about creating robots that can operate
in kitchens, healthcare, and other domains.

II. OVERVIEW OF APPROACH

We organize our presentation of results in tackling
robot painting into 3 parts:

Rendering (the “hand”) — First, we describe our custom
robot platform and the novel advancements required
to execute the highly dynamic motions required
of graffiti spray painting. We describe hardware
design, state estimation, and control of our cable-
driven parallel robot (CDPR). The design require-
ments of graffiti art informed our decision to use
a CDPR design, which can economically scale to
large sizes and achieve high speeds, but at the costs
of requiring more advanced controllers and lack-
ing stiffness. Our novel factor graph -based state
estimator and controller combined with our high-
bandwidth communication link produces superior
tracking performance enabling successful execution
of spray painting trajectories.

Replicating (the “spinal cord”) - Next, we discuss how
human motions can be captured and replayed on
the CDPR. We use both motion capture and tablet-
based input devices, but still require preprocessing
steps before feeding trajectories to the CDPR track-
ing controller, including path smoothing and tra-
jectory re-timing to retarget human motions to the
cable robot to minimize tracking errors associated
with low stiffness.

Adaptating (the “brain”) - Finally, we investigate the
ways human inputs may be modified to produce
high-quality artwork from low-detail inputs, such as
text prompts or rough sketches. We study artistic
composition as path planning problems to allow
sparse drawings to be filled-in as complete art-
works; generative modeling to generate robot paint-
ing trajectories directly from high-level inputs; and
adaptation to the brush painting medium to show
how our generative approaches can apply to other
dynamical systems.

The layout of this proposal is as follows. Chapters
M) go through these 3 parts, respectively, in detail and
with their own related works sections. Chapter [5] will
discuss applications of our research including public
painting demonstrations and a hydroponic plant pheno-
typing project sharing many of the same technologies.
Finally, Chapter [6] will conclude with a summary of our
contributions and future directions.



Chapter 2: Rendering

To render graffiti spray painting, we choose to use
a CDPR because they scale well to large sizes, achieve
fast speeds and accelerations, and are relatively low-cost.
However, cable robots also present challenges associated
with high-bandwidth control and lack of stiffness.

In this section, we will discuss selection criteria (in-
cluding related works), robot design, and novel tech-
niques for control and estimation.

III. RELATED WORKS
A. Robot Platforms for Spray Painting

Several robots have been previously been developed
for spray painting. Serial arm manipulators and gantry-
based systems are precise and mature, but arms do not
scale well to large workspaces [11]], [26] and gantry-
based systems exhibit a tradeoff between size and porta-
bility [8], [12]. Mobile manipulators address these issues,
but are currently not as dynamic or precise as human
artists [[13[]. Aerial robots are popular for their ability
to paint otherwise inaccessible walls, but have been
cited as being difficult to accurately control due to
susceptibility to disturbances and comparatively limited
acceleration capabilities [[14]—[17]. Cable-based systems
appear to be promising, but so far [18[], [19] have
only demonstrated raster- or stippling- style painting
while [20] has not demonstrated the highly dynamic
motions employed by human artists. The use of only 2-
cables limits the dynamic capabilities of the cable robot
since cable suspended parallel robots (CSPRs) are under-
constrained, i.e. the set of wrenches that can be applied
to the end-effector does not contain an arbitrarily small
hyper-sphere centered at the origin, however 4-cable
robots are sufficiently constrained for planar motion and
are thus able to achieve higher speeds and accelerations.

Therefore, we choose to use a 4-cable CDPR design
for our graffiti spray painting robot.

B. CDPR State Estimation

CDPR state estimation is a prerequisite for control
and has been thoroughly studied in the contexts of pose
estimation, offline calibration, and online/continuous
calibration and state estimation. Pose estimation, pro-
vided good calibration parameters, can in most cases be
computed by solving a nonlinear least squares (NLS)
problem with Gauss-Newton iteration [27]. Offline self-
calibration can be done by performing a pre-defined
movement routine [28]], [29] or by passively collecting
sensor data and performing an optimization to compute
the parameters [30], [31]. Online continuous calibra-
tion continuously updates calibration parameters but can
be challenging when the data does not permit well-
conditioned optimization problems requiring special con-
siderations. For more detail, see Appendix [A]

C. CDPR Tracking Control

CDPR control has evolved from basic inverse kinemat-
ics in the 1980s to modern methods like dual-space PID,
feedback linearization, SMC, and MPC. While linear
methods like PID are common, they can be sensitive
to robot configuration [32]. SMC is favored for robust-
ness but commonly has “chattering” issues [33]. MPC
provides strong performance but poses implementation
challenges [|34]]. For additional detail, see Appendix

IV. ROBOT HARDWARE DESIGN

Given the design requirements for painting graffiti
based on human spray painting data, we believe that a
CDPR is an ideal platform. In this section we detail our
robot hardware.

A. Design Considerations

The primary design requirements for a graffiti painting
system involve workspace size, maximum end-effector
velocity, and maximum end-effector acceleration. We
seek a platform which can be scaled to a workspace
20mx20m or larger, though in this work we only seek a
demonstration sized at a few meters. Based on analysis
from motion capture recordings of graffiti artists, we
determined that we require 6m/s and 50m/s? of speed
and acceleration, respectively. Assuming the mass of the
spray can and actuating accessories do not exceed 2kg,
including gravity the robot should be capable of exerting
120N upward and comparable forces in other directions.

Secondary design requirements include portability, ac-
curacy, and stiffness. It should be feasible to disassemble
and reassemble the robot on-site at the wall of a building.
Accuracy and stiffness are considered secondary con-
straints because, compared to art forms such as brush
painting or sculpture, graffiti is less sensitive to posi-
tional inaccuracies and experiences less reaction force.
Based on the thickness of a line painted with a “needle”
nozzle Scm from the painting surface, we estimate 2.5cm
of repeatability to be sufficient. We estimate an accuracy
of 1% the size of the painting to be sufficient, based
loosely on [35]]. We estimate external disturbances to be
negligible based on paint reaction forces and historical
Atlanta wind speeds.

CDPRs present ideal platforms for graffiti painting
given the aforementioned requirements. A CDPR is a
robot whose end-effector is pulled by a set of cables
which are driven by winches on a fixed base. Due to
properties of cables, CDPRs can scale to extraordinary
sizes and speeds [36], [|37]], albeit with reduced stiffness.
These qualities make them ideally suited to the large
but relatively undisturbed setting and modest accuracy
requirement of graffiti painting.

CDPRs also have an active research community which
has solved many challenges in workspace analysis [38]|—
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Fig. 1. Our planar CDPR has a 4-cable, rectangular configuration with
the end-effector in the center carrying the spray paint can.

Fig. 2. Our cable robot (left) includes an end effector that carries the
spray paint and actuator electronics (center) and 4 winch assemblies,
each consisting of a shared motor controller, motor, and helical winch
(right, x2).

[40]], control, and estimation (further discussed in Sec-
tions [[I-B] and [[I-C)). Preliminarily, based on [41]], we
estimate a 1kHz update frequency to be necessary for
real-time control.

Finally, we define the requirements to actuate the
spray can nozzle. For a full can of Montana BLACK
400mL, the force required to depress the nozzle was
measured to be 27N and the displacement was measured
to be 2mm. Other 400mL spray cans by the brands
Montana, Hardcore, and Kobra were found to have
similar actuation forces and displacements.

B. Approach

Our CDPR uses 4 cables in a planar configuration
to exert pulling forces on the end effector via 4 motor-
driven winches (see Fig. [T). The end effector was built
to be lightweight and carry the spray can and actuating
electronics. It has 4 mounting points to connect to the 4
CDPR cables. The cables are low-stretch and lightweight
(cable sag is negligible). The spray can nozzle actu-
ating mechanism is wireless, battery-powered, and im-

N
-

Fig. 3. Photo of a graffiti painting by our robot.

plemented using a servo with the lever-arm mechanism
from [42]. Complete design details can be found in our
accompanying arXiv paper [43].

C. Results

Our assembled robot is pictured in Figures [3] and
The winches satisfy our design requirements with each
being capable of pulling a 2kg mass on the cable up to
7.6m/s and 94m/s? and bidirectionally communicating at
1kHz. The end-effector and spray can actuating mecha-
nism are also pictured in Fig. 2] The total mass varied
between 1006g and 1317g depending on the spray can.
The spray can actuating mechanism was able to depress
the spray nozzle with 100% success rate in a trial of 100,
1 second long actuations. The latency from commanding
to dispensing paint was measured to be 400ms.

D. Discussion & Limitations

We are able to paint well, as in Fig. 3] despite not
being able to use our 6DoF captured data to its full
potential since we are limited to planar motion. Also,
we will discuss in Section [X] that the paint limits us to a
maximum speed far below what the hardware is capable
of (and the speed suggested by the motion capture analy-
sis). A combination of hardware upgrades and intelligent
paint modeling and optimization are likely necessary to
leverage our system’s full potential, especially actuation
to move the nozzle closer to the canvas.

V. CONTROL AND ESTIMATION

We present a novel CDPR state estimator and tracking
controller utilizing factor graphs which performs an
offline nonlinear optimization whose solution is used
to generate an online, optimal, linear state estimator
and controller. The state estimator uses only the cur-
rent measurements and future works can use the same
framework to extend the state estimator to also perform
online continuous calibration. Because the factor graph
offline models probabilistic uncertainties, the linear on-
line continuous calibration would only require current
measurements while also naturally balancing old and
new data. Meanwhile, the linear controller is generated
from a nonlinear optimization offline which makes it
optimal, while being easy to implement online by virtue
of the fact that it is a linear, time-varying PD controller.

We frame our approach around factor graphs because
we believe them to be useful abstractions for describing
trajectory optimization and controls topics. Simultane-
ously, factor graphs are highly efficient, visually in-
sightful, and modular, allowing efficient incorporation
of nearly any sensor, control objective, and/or constraint
with minimal modification [45]. Probabilistic graphical
models, including factor graphs, have seen success in
state estimation and perception and are becoming
increasingly popular as tools for optimal control [44],



Fig. 4. Prototypical example of a factor graph describing the LQR
problem with 4 timesteps, adapted with permission from [44]]. Large
circles are variables and small black circles/squares are factors. xg
represent state variables, uj represent control variables, black squares
represent dynamics constraint factors, and black circles represent
optimal control objectives.

[45], [47]. Factor graphs, in short, are a graphical way
to describe optimization problems where variables (un-
knowns to solve for) and factors (optimization objectives
or constraints) are connected by an edge if the variable
is involved in the objective/constraint. Fig. |4| shows a
prototypical example of a factor graph describing the
LQR problem.

Our algorithm, summarized in Fig.[5] consists of three
offline stages followed by an online controller.

A. Trajectory Generation and Gain Matrix Pre-
Computation

Offline, we can compute the optimal nominal tra-
jectory then, almost for free, we get a (time-varying)
locally-optimal Kalman Filter and LQR controller. The
algorithm is summarized:

A. Pre-compute a nominal trajectory that tracks the
reference trajectory by ‘“solving” a factor graph.
This is equivalent to trajectory generation using
the iterative Linear Quadratic Regulator (iLQR)
algorithm [48]].

B. Pre-compute time-varying LQR gain matrices by
linearizing the graph around the nominal trajectory
and using variable elimination on the linearized
graph. Linearizing the graph is equivalent to ap-
plying a first-order Taylor expansion to convert the
constrained nonlinear least squares problem into
a constrained linear least squares problem (finite
horizon LQR problem), and variable elimination is
equivalent to using backward-induction to solve the
Bellman equation.

C. Pre-compute time-varying Kalman Filter (KF)
gain matrices by creating a graph with stochastic
factors instead of cost/constraint factors, lineariz-
ing the graph around the nominal trajectory, and
marginalizing at each time step. The stochastic
factors represent noise in the dynamics and/or mea-
surements, and marginalizing at each time step is
the Markov assumption the KF makes.

Full details can be found in Appendix [Bor in [49].

Online Controller

D KKK

oy
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Fig. 5. Our proposed controller leverages offline computations to
simplify the online controller, which is locally optimal while requiring
only 3 vector-matrix multiplications and 3 vector additions per update.
The offline stage, outlined in green, generates time-varying gain
matrices and feedforward vectors. The online stage, outlined in red,
is a standard TV-LQG controller.

The result is, for each timestep k, a nominal point
27, uy, and gain matrices K, for the LQR controller and
*Ky," Ky, ki for the Kalman Estimator.

B. Online LOQG Controller

Finally, we combine the LQR and KF gain matrices
to form an online controller in the form of a TV-LQG
controller. This is of course thanks to the standard LQG
result: the stochastic optimal control policy is to feed the
optimal estimator into the optimal controller, for systems
with only state- and control- independent noise. From the
Kalman Filter, we obtain an optimal estimate &, for dzy,
so LQG states that we may use & in place of §, from
the LQR controller:

(5uk = kafk (1)

Ty = "KpTp—1 + “"Krpbup—1 + "Kipdz,  (2)

where 0z denotes the deviation in cable lengths and
speeds from the nominal values computed by IK on x*.

Making the assumption that our controller always
follows the optimal controller, we can also substitute @)

into (2):
T = wK%i'kfl + Kz 3)
where *K' ="K +“"Ki K.
And finally, for completeness, we can substitute our

0 expressions to obtain our final time varying LQG
controller:

T = "Ky@p—1 + " Kyzg + ki 4)
up = K&y + uj, (5)
where ki, = — “ Kz}

The only computations that need to be run online are
(@) and (@), which require only 3 matrix multiplications
and 3 vector additions per update. Meanwhile, [C; =
Ky, " Ky, " Ky, " Ky, u*, ki are pre-computed offline.

1) Interpolation: It may be desirable to run the con-
troller at a faster rate than the set of precomputed I,
since K may be only slowly changing while we typically
want a controller update rate of at least several hundred
Hz. We can devise a simple “zero-th” order interpolation:

Z(kdt+ At) =" ;gi'k—l + *Kiz(kdt + At) + ki
(6)



Although we found in our experiments that this in-
terpolation is sufficient, more intelligent interpolation
schemes may be investigated.

VI. SUMMARY

In this section, we presented our robot platform which
can execute given trajectories at high speeds and ac-
celerations and scale to large sizes. We described the
graffiti spray painting criteria that informed our choice
of CDPR platform and design parameters. We also
presented our novel CDPR state estimator and tracking
controller algorithm which leverages factor graphs to
produce optimal estimators and controllers which are
easy to implement online. Although the CDPR state
estimator currently estimates only the end effector pose
but not the kinematic or dynamic parameters, it could
be extended to also estimate the kinematic and dynamic
parameters online. Finally, although the CDPR is planar,
it could be naturally extended to SE(3) by adding another
symmetric set of 4 cables, or at minimum 3 additional
cables in a non-symmetric pattern.

VII. LIMITATIONS

Although our planar CDPR can successfully track
desired trajectories, it still suffers from relatively low
stiffness which can cause (out-of-plane) oscillations from
disturbances which are exacerbated by excessive accel-
erations. In particular, minor imbalances out-of-plane in
the end effector center of mass, which are unavoidable
as the paint can empties over time changing the mass
distribution, cause out-of-plane disturbances in reaction
to in-plane accelerations. Although certain out-of-plane
modes are in theory controllable (but not reachable)
through internal cable tension and input shaping, in
practice they are virtually impossible to model, observe,
and control. Instead of rigorously modeling the out-of-
plane dynamics, for which even producing high-quality
input disturbances with actuator bandwidth limitations
is challenging [S0], [51f], we instead make the simple
heuristic that minimizing in-plane accelerations will also
minimize out-of-plane oscillations.

Additionally, paint deposition is sensitive to the tra-
jectory speed profile. A maximum speed constraint is
imposed to deposit a sufficient thickness of paint.

In the next section, we will discuss how we capture
and modify human input trajectories so that they are
replicated as faithfully as possible on the cable robot
while still satisfying the aforementioned speed and ac-
celeration constraints of the robot and paint deposition.

Chapter 3: Replicating

We wish to replicate a human artist’s vision for an art
piece as faithfully as possible. As mentioned in Chapter
[Il we choose to guide our robot with human motions,
since they are intuitive, rich, and expressive while also
serving as excellent priors for more general robotic tasks.

We formulate our replication problem as follows:
given a human input motion, CDPR limits, and paint
deposition characteristics, we wish to record and follow
the input motion path exactly using the robot and with
the best feasible paint deposition speed that respects all
limits. The process of replicating human motions is then
naturally composed of 2 parts: (1) capturing motions and
(2) modifying their timings to accommodate CDPR and
paint deposition dynamics.

Capturing human motions is relatively straightfor-
ward: we study using both a motion capture system and
an iPad as human motion input devices, and describe the
procedures for each in Section

Captured motions must be modified because cable
robots inherently lack stiffness and paint deposition has
speed constraints, so naively applying captured motions
to the robot will result in shaking and uneven paint
deposition. Modifying captured motions to satisfy con-
straints while still being as faithful as possible to the
original human input is framed as a trajectory retiming
problem, subject to speed, acceleration, and torque con-
straints/objectives.

Specifically, we formulate the Time-Optimal Path Pa-
rameterization (TOPP) problem in task space for our
cable robot, implement the TOPP-RA algorithm, then
extend the algorithm to Quadratic Objective Path Pa-
rameterization (QOPP) using factor graphs to balance
multiple the multiple objectives of painting speed, con-
trol margins, and end effector stiffness. We describe our
work in Section [X]

VIII. RELATED WORKS

The trajectory retiming problem, in which we seek a
dynamically feasible speed profile for a given path, is
a well-studied problem in robotics. In addition to appli-
cations such as ours in which the task pre-determines
the path we must take and we need only compute
a timing, it is also useful in the decoupled approach
to trajectory generation. The decoupled approach is
commonly studied in high-dimensional systems (e.g.
humanoids) because it computes first a kinematically
feasible path, then a dynamically feasible timing, making
it more tractable than the full kino-dynamic trajectory
optimization problem [52, Ch. 11.2].

The time-optimal trajectory retiming problem (or
Time-Optimal Path Parameterization, TOPP) represents
perhaps the most common retiming objective and was
practically solved in the in the late 1980s, although



algorithmic enhancements have continued to be made.
The time-optimal objective is to minimize the time to
traverse the path. It has been studied extensively in
the literature and traditionally has taken one of three
approaches [53]]: convex optimization, dynamic program-
ming, and searching for bang-bang control switching
points where the active constraints change.

Two key precursor techniques enabling efficient al-
gorithms are shared by almost all approaches, dating
back to at least [54]-[58]. First, the equations of motion
and constraints are reparameterized in terms of the
scalar time parameterization function (see Sec. for
details). This enables Bellman-style forward-backward
algorithms. Second, the monotonicity of the time-optimal
objective implies that the solution must lie on the bound-
ary of the feasible set (bang-bang). Hauser [59], Nagy
& Vajk [53]], and Pham et. al. [53]] all utilize proofs
along these lines to justify the use of sequential linear
programming (SLP) or greedy speed maximization. This
bang-bang approach is efficient but restricts the objective
to minimum-time or similar objectives.

However, the time-optimal retiming problem is not
always the most desirable objective [60], particularly
in applications where we seek to balance multiple ob-
jectives or where bang-bang control is unsuitable. For
example, cable-driven parallel robots maintain stiffness
primarily through internal tension which diminishes the
closer they are to torque limits. Thus balancing speed
with torque margin is desirable to maintain stability and
safety [3[], [49]]. This and several other applications in
balancing robot safety, stability, and wear with speed of
operation motivate the use of quadratic objectives, which
can minimize the sum of multiple squared errors instead
of or in addition to hard constraints with TOPP.

Surprisingly alternate retiming objectives are rarely
considered in the literature. Dynamic programming ap-
proaches [56], [58], [61]] discretize not only in time
but also in state space. Some approaches address other
objectives, especially energy-minimization [62], [63],
but apply only to specific objectives, e.g. integral of
a time-independent running cost. Direct transcription
approaches tend to be the most general [[60], [64] but,
even with second-order cone problem or sparse linear
algebra solvers, do not fully exploit the structure of this
scalar-function optimal control problem.

IX. CAPTURING HUMAN MOTIONS

The capture process is important for both learning
about the motions to produce graffiti art and as an
input modality for artists to create new art. As such, we
use both motion capture, which is highly accurate but
expensive and cumbersome, and a tablet, which is less
accurate but more accessible and portable. Although we
do not quite bring the project to this point, in principle

the former modality provides enough information for
us to later augment iPad and low-effort motions with
the sufficient spatial and stylistic information to produce
high-quality graffiti art from low-effort input data.

In this work, we consider 3 different capture strategies:

1) collect a library of composable shape outlines,
2) record the motions for a full painting, and
3) capture motions to be painted in real-time.

For (1), we seek to record the full SE(3) trajectory
of the spray can as an artist is actively painting, so
we use motion capture for its high accuracy, precision,
framerate, and ease of use. We rigidly attach motion
capture markers to a spray paint can and canvas to record
graffiti artist collaborators’ SE(3) painting trajectories.
The 2 artists were each instructed to paint the outlines
of the 26 letters of the alphabet and a handful of shapes
of their choosing. The trajectory data was cleaned and
processed to obtain a library of shape outlines. Further
details on data collection procedure and results can be
found in [3, Sec II].

For (2) and (3), we seek a more accessible, lower-
cost capture method so we opt to use a tablet (iPad) to
record 2D artist motions. Drawings are recorded in the
browser, making it portable to any tablet or computer,
but at the expense of losing some data due to security
restrictions (i.e. timestamp accuracy is limited to Ims or
worse on most browsers due to Spectre and Meltdown).
As a result, some minor pre-processing is needed to
smooth trajectories.

X. TRAJECTORY RETIMING

We wish to faithfully reproduce the human’s input
motion while also respecting the acceleration and speed
constraints described in Section To remain faithful
to the original human motion, we seek to only retime
the trajectory while retaining the original path shape. To
accommodate the low stiffness inherent to cable robots,
we seek to impose both task-space acceleration and joint-
space torque limits / objectives. To accommodate the
paint deposition constraints, we seek to impose task-
space speed limits / objectives. Finally, to minimize
painting time for both drip minimization and economy,
we seek to impose a trajectory duration objective.

From these considerations, we introduce Quadratic
Objective Path Parameterization (QOPP): an extension of
Time-Optimal Path Parameterization (TOPP) to include
quadratic objectives thereby allowing balancing multiple
objectives. Figure [6] shows how retiming improves the
cable robot’s ability to replicate the input path.

Our three contributions are as follows:

1) Applying TOPP-RA to our Graffiti Robot: Our
first contribution is a simple demonstration that TOPP-
RA can be effectively applied to the graffiti robot do-
main. Given input trajectories, we first parameterize each



Fig. 6. Cable robot executing the same path for the letter “G” using
the human-input timestamps (left) and using our retimed timestamps
(right) shows that retiming the trajectory according to speed and
acceleration limits avoids the inaccuracies and oscillations that occur
when excess speeds and accelerations are commanded by the naive
human operator. Images were generated by overlaying video frames to
simulate a long-exposure image.

stroke as a spline using either regression or interpolation
on a subset of waypoints. We then apply TOPP-RA to
each spline to obtain a time-optimal parameterization of
the trajectory. Finally, we execute the trajectory on the
robot using the controller described in Section [V}

2) Relationship to Factor Graph Elimination: Our
second contribution is in demonstrating an equivalence
between the state-of-the-art TOPP-RA algorithm and
factor graph elimination. In particular, we can show that
the TOPP-RA algorithm is equivalent to eliminating a
factor graph representing the well-known projected path
constraints (see Eq. 5, 6]), with the t = T,...,0
elimination ordering. The proof is very similar to our
published work in [45]), except we must extend our factor
graph elimination to include inequality linear constraints
to solve the TOPP problem. In the general case this
is Fourier-Motzkin Elimination, whose complexity can
grow exponentially w.r.t. the number of elimination steps
[]6_6[]. However, it can be shown that in the special
case when inequality constraints appearing in the “joint”
after eliminating each variable only ever apply to one
scalar variable, the number of inequality constraints
never grows. The TOPP problem has this exact special
structure which is leveraged by both the factor graph
elimination algorithm and by TOPP-RA, and in fact it
can be shown that the two algorithms are completely
equivalent.

3) Quadratic  Objective  Path  Parameterization
(QOPP): Our final contribution is to extend TOPP
problem approaches to quadratic objectives to enable
balancing multiple objectives. The factor graph
interpretation allows us to naturally extend to arbitrary
objectives and constraints, as long as we can define
an elimination operation on those factors. We derive
and implement a method to perform exact elimination
for the retiming problem with quadratic objectives,
linear inequalities, and linear equalities. We apply the
algorithm for our cable robot painting problem and
show that balancing objectives generates more accurate
paintings than TOPP.

A. TOPP Formulation for Graffiti

We define our TOPP problem drawing from the nota-
tion and work of [65] as follows. Given a path in task
space T'(s) : [0,1] — SE(3) with twist (s) € RS and
corresponding g(s) : [0, 1] — R™ in joint space, we seek
to find a re-parameterization, s(¢) is a monotonically
increasing function from [0, 7] — [0, 1], which is time-
optimal, i.e. one which minimizes the total time 7" while
satisfying a set of constraints:

s*(t) = argmin T (7a)
s(t)
subject to
A(s)i +z" B(s)x + f(s) € €(s), (Tb)
AY(s)x+ fU(s) € €%(s) (Tc)

where all the constraints are applied for all t € [0,T7; g,
&, and their derivatives are functions of s(¢) although
arguments are omitted for readability; A", B, f* de-
note coefficient matrices/tensors/vectors for general first
and second order constraints; and %  denote convex
polytopes of admissible values for the corresponding
constraints.

The constraints (7b) and can represent all the
constraints we seek to impose, namely task-space speed
and acceleration limits (natively) and joint-space acceler-
ation limits through a straightforward transformation. To
express cable robot joint constraints in the task space, we
start with the equations of motion for a free-floating body
(the end-effector) and substitute the winch dynamics and
motor torque constraints. Additional details are provided
in Appendix [C]

B. TOPP Solution using Factor Graphs

We solve the TOPP problem by applying the same
method outlined in [65]]. This relies on 3 key insights:

1) The task-space constraints in (I2) can be re-written
in terms of s(¢) and its derivatives.

2) The clever parameterizations = $% and u = §
allows us to rewrite the s(¢) constraints as a scalar
linear dynamical system with linear control-action
constraints.

3) The linear dynamical system forms a linear program
which can be solved in linear time using a dynamic
programming algorithm, which is equivalent to vari-
able elimination.

We now describe each of these steps.

1) Re-writing Constraints in Terms of s(t): Differen-
tiating a(s(t)) with respect to ¢ yields

d

(s(1)) = -8 ®)
d? d

i (s(t)) = %sﬁ + d—fs )



Substituting into and yields constraints of
the form
a(s)s + b(s)s* + c(s) € €(s)
a’(s)s+ c’(s) € €V(s)

(10)
(1)

where a(s), b(s), c(s),a’(s),c’(s) are vector functions
of s.

Because 5 is a scalar function, can be rewritten
in the form of (T0). Specifically, (IT) can be interpreted
as intersections of a translated ray with a convex region,
which in turn can be reduced to just a convex set in R!.
Furthermore, because s(¢) is monotonically increasing,
we have another constraint that $(¢) > 0 so we can
safely square the constraint. For example, if (TT)) reduces
to § € (a,b), then we can write 05 + 12 + 0 €
(min(0, @)%, min(0, b)?). Therefore, we have turned out
TOPP problem into:

s*(t) = arg min T
s(t)
subject to a(s)s + b(s)s? + c(s) € €(s)
(12b)

(12a)

2) Parameterization: At this point, to remove the
dependence of the coefficients on s, we discretize our
problem in s:

ai8; + b1812 +c; €%
1
1 2A
A S
o $(t) $i + Skt
where the summation holds exactly for the piecewise-

constant assumption on § [[67, Sec 6.1.1].
Defining z := $% and u := &, we can rewrite (I2b) as

13)

(14)

a;u; +b;x; + ¢; €G; (15)
and, remarkably, 92 = 2398 = 298ds — 25 = 4,

Then assuming a zero-order hold on u, we have the
relationship between = and w:

Tit1 = X4 —+ QUiAS. (16)

Finally, it is proved in [65] that the objective min T’
can be achieved by greedily selecting the maximum s;
from the set of admissible values at each time step.
Following the same reasoning, it is possible to prove
that the TOPP problem is equivalent to the following
LP:

N
w2 e
subject to
a;u; +bx; +¢c;, €%, 1=0,...,N, (17b)
Tiv1 —¢; —2u;Ag =0, 1=0,...,N—1, (17¢)
>0, i=0,...,N. (17d)

for some very large w, which denotes that each x; should
be taken greedily and irrespective of any other z;.

Intuitively, the equivalence of the optimization prob-
lems despite a different objective function is due to the
fact that there exists some critical threshold A} such
that, when As < As*, the dynamics coefficient 2A,
will be smaller than a;/b; for all i so that it will never
be better to sacrifice a smaller x; to gain a larger u;
(which in turn gains a larger z;11). The details of the
proof require additional machinery to address the fact
that a;/b; is not defined for vectors, but the intuition is
the same.

3) Solving the LP: Although [65] solves the LP in
O(N) time using a reachability analysis approach, we
can instead use factor graph elimination to derive an
equivalent algorithm.

Solving the LP is a straightforward extension
of the same approach used in [3], [44], [45] and sum-
marized in Figs. First, the LP is expressed
as a factor graph (Fig. [7). Next, ug is eliminated by
substituting the “dynamics” equation (I7c). Then, zq is
eliminated by greedily taking the largest feasible value
for x(; and solving 2, 2-variable scalar LPs to determine
the minimum and maximum bounds on x; given the
constraints on g, obtaining Fig. Eliminating the
remaining variables proceeds the same way, finally re-
sulting in the Bayes Net (Fig.[9), from which the solution
x*,u* is obtained via back-substitution, involving 1, 1-
variable scalar LP solve per timestep. Full details can be
found in Appendix [D] or [68].

Finally, the optimal time parameterization s*(t) can
be obtained by integrating x* = 5*. We defer to [[69] for
the intracacies of parameterizing solution. As in [69],
zero-inertia points are accurate in the limit A — 0.
The time optimal trajectory is g*(t) = g(s*(¢)).

C. Extending to Quadratic Objectives

The variable elimination algorithm naturally extends
to other objectives because it remains unchanged no
matter the objectives or constraints; only the algebra of
each elimination step changes. Let us then define our
(discretized) general quadratic objective problem as:

N
arg min > &pQuiy + kRl + B Nyig
wgl i izo
(20a)
subject to  (I7b), (IT7c), (20b)
where scalars Ty = T — Tk desired, Uk = Up —

Uk, desired> and Q, Ry, Ny, are state, control, and cross
cost weights.

To apply variable elimination to this new problem,
we must define how to eliminate variables when they
may have quadratic objectives, linear equalities, and/or
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Fig. 7. Factor graph for a 4-timestep TOPP problem. Each variable
node represents a variable z; or w; in the LP. Each factor node
represents a constraint (square) or objective (dot) term.
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Fig. 8. Factor graph for a 4-timestep TOPP problem after eliminating
up,xg. The arrows denote back-substitution to be done at the end
and the new factor (39) denotes the constraint propagated to x1 after
eliminating xg.

. 1
uk (T, Th+1) = o (Tt — ) (18)
S
xp(Tpq1) = max T
s.t. &(IkJrl — ) + brzy + cp € G,
24 19)

Tk, min S Tk S Tk, maz>
zp > 0.

Fig. 9. After eliminating all the variables, we obtain a Bayes Net.
Arrows denote conditionals (T8)(T9) which we can efficiently back-
substitute.
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Fig. 10. Runtime plot for a sample quadratic objective retiming
problem shows that our algorithm is still O(n), even with quadratic
objectives.
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linear inequalities. Our problem is much easier than in
the general case because the retiming problem involves
only scalars.

Eliminating any variable with an equality factor (e.g.
uy) is easy and remains largely unchanged from the
TOPP case. The only difference is that, when creating the
new joint factor on the separator, we substitute into not
only the inequalities but also into the quadratic objectives
to form a new quadratic objective.

Eliminating a variable without an equality factor, i.e.
one with quadratic objectives and linear inequalities,
is a parametric QP problem. The solution 7}, (S(zx))
turns out to piecewise linear, making the joint piecewise
quadratic. Furtheremore, it is straightforward to compute
in the scalar case by finding the parametric unconstrained
solution to the quadratic objective (the solution is linear)
then computing the intersections with the inequality
constraints and traversing the inequality constraints to
the minimum and maximum bounds of S(z). The full
details are available in our paper [68]].

Although theoretically our QOPP algorithm’s com-
plexity is quadratic with the number of timesteps, in
practice we find the number of segments each timestep
usually remains bounded (around 20) so it maintains
linear time as in TOPP (Fig. [10).

D. Other Possible Extensions

Although not addressed in this thesis, extending be-
yond quadratic objectives should be possible in a number
of ways, including handling nonlinear objectives and
constraints, obtaining optimal feedback gains, solving
full kinodynamic motion planning by alternating path
planning and retiming, and incrementally reparameteriz-
ing for real-time control.

XI. SUMMARY

In this part, we showed that (1) motions directly
recorded with motion capture or tablet input device
cannot be faithfully executed at the recorded speed due
to cable robot dynamics limitations, (2) applying trajec-
tory retiming using the time-optimal objective produces
much better results, and (3) extending the time-optimal
objective to a quadratic objective allows balancing mul-
tiple objectives producing even better results. Figure [6]
well-illustrates the improvement in replication accuracy
resulting from our trajectory retiming algorithm.



Chapter 4: Adapting

In this part, we aim to address three objectives. First,
we aim to provide utility to artists by extending be-
yond replicating their motions to also modifying/building
on top of them, thereby cooperatively amplifying their
creativity. Second, we explore a high-level strategy to
generate robot trajectories that generalizes to different
platforms and inputs. Finally, we explore the different
facets of style and how we may disambiguate them from
content.

Because art is so broad, we must restrict our scope to
a few well-posed sub-problems that are both useful and
feasible:

1) Composition: given shape outlines, generate the
necessary motions and order of motions to fill-in
and/or outline the shapes.

2) Restylization: given vague or rough artist intent, e.g.
conveyed by a prompt, use generative models to
produce robot painting trajectories.

3) Medium Transfer: given an artwork in one medium
or abstraction, generalize artworks to the brushed
paint medium by learning a brush model.

These three avenues build on each other to satisfy our
objectives. Composition represents, in conjunction with
existing works in paint modeling and stroke-based ren-
dering, a way to generate training data. More specifically,
it is a bridge between the large but unlabeled painting
trajectory datasets and the vast body of existing research
in pixel-based image understanding. Restylization ap-
plies generative models to painting trajectories including
studies of how to disambiguate style from content and
other dimensions of intent. Finally Medium Transfer
demonstrates generalization of the approach to a new
medium and robot platform.

XII. RELATED WORKS

A. Stroke-Based Rendering

Stroke-Based Rendering (SBR) is the task of repli-
cating a reference image as closely as possible using a
sequence of (brush) strokes. Aaron Hertzmann was an
early pioneer in SBR dating back to at least the late
1990s [24]]. His approach to greedily place brush strokes
one at a time in the region with the greatest error from
the reference image is still popular today, but modernized
with differentiable renderers [[70], RL [71], GANs [72],
and more.

Because SBR requires a rendering model, many mod-
ern Stroke-Based Rendering works also train a small
neural network to predict the shape of a brush stroke
given some trajectory parameters. A common approach
is to execute a number of painting stroke trajectories
and, for each stroke, image the resulting stroke on the
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page and use supervised learning to predict the rendered
stroke from the trajectory parameters [5].

One limitation of SBR is that it tends to produce many
short strokes instead of few long strokes. Perhaps this
is because long strokes introduce too much correlation
across long time and space horizons making the problem
too challenging without good initializations as in the
calligraphy application.

B. Generative Sketch Models

A wide variety of more modern approaches have been
studied for generating drawing trajectories, especially
from inputs other than reference images.

Sketch-RNN [73]] is a seminal and prototypical exam-
ple of an autoregressive approach which uses a sequence-
to-sequence VAE (using RNN encoders/decoder) to gen-
erate a sequence of strokes one at a time from a latent
vector derived from an input sequence “prompt” trained
on a dataset of human-drawn sketches [74]]. Many works
use Sketch-RNN’s VAE-RNN architecture [75]], [[76].
GANS are also popular, sometimes combined with VAEs
(771, (78]

Non-autoregressive approaches generate all the strokes
at once instead of one stroke at a time. CLIPDraw [79]],
StyleCLIPDraw [80]], CLIPasso [81], and CLIPascene
[82] are examples of optimization-based approaches
where a differentiable renderer [83]] enables optimizing
for an input trajectory whose CLIP-embedded render-
ing best matches a CLIP-embedded language prompt
[84]. Several recent works have expanded upon this
by incorporating image diffusion models to help better
initialize and guide the differentiable renderer [85]—[87],
but interestingly do not directly apply diffusion to a
vector/trajectory representation.

Unlike classic SBR, generative models tend to produce
a very different style of stroke-based rendering. Namely,
they tend to produce free-hand sketches [88] instead
of painterly renderings. Characterized by fewer longer
strokes, these low-detail drawings have a high degree
of abstraction. In some ways, these sketches are better
suited to our objective of adapting human motions which
often come in the form of similar sketches, but we
also seek to impart more detail to the inputs so as to
complement the artist rather than replace them.

C. Generative Robot Trajectories

While a number of LLM works have shown LLMs
effective at planning [89], [90], we instead focus on
approaches that directly generate robot actions.

Auto-regressive approaches for generating robot tra-
jectories appear to be the most common and, when
conditioned on some input, can be interpreted as policies.
Transformers are popular for their performance and ease
of conditioning on various inputs. RT-1 [91]] is a seminal



example which uses a decoder-only transformer to out-
put a (single) tokenized action from a tokenized input
sequence computed from vision and language inputs, an
approach shared by many papers. RT-2 [92] instead fine-
tunes an existing Large Vision-Language Model by tok-
enizing actions by existing language tokens (e.g. 1-1000
or 256 least-frequently-used tokens) creating a multi-
modal vision-language-action model. Several works use
LLMs to generate executable code representing policies
or trajectories [93]-[95]. Various Sequence2Sequence
approaches [73], [96]], [97] are also used for generating
open-loop trajectories. Several works also use an RL
approach with a variety of architectures [98].

Non-autoregressive models include Diffusion, VAEs,
and GANs. The seminal paper series [99]], [100] uses
diffusion with a temporal convolution backbone to gen-
erate robot trajectories conditioned via inference-time
guidance or classifier-free guidance.

XIII. COMPOSITION: INFILLS AND STROKE
ORDERING

Through real-world testing, we found that artists using
our graffiti painting robot system with the iPad input
device typically only draw simple shape outlines but do
not “color-in” or do shading. We hypothesize this to be
because the unavoidable disconnect between the artist
iPad inputs and the robot painting on the canvas limits
the interaction to the high-level, abstract shapes instead
of the low-level, detailed shading.

Therefore, we propose to automatically complete
high-level shape outline inputs with algorithmically gen-
erated infills and shading. This will enable artists to
focus on the high-level shapes and let the robot fill in
the details. Because filling in the shapes may require
long times for large murals, we propose allowing the
artist to input all the shape outlines upfront and allow
the system to reason about the order stroke trajectories
must be executed.

This is implemented in [3]], whereby the artist inputs
shape outlines using motion capture (or from a pre-
recorded library of captured shapes as described in
Section [IX]). The scale and pose of each shape is placed
by the artist on a virtual canvas in order of “depth”. The
infill is then computed as an application of a classic path
planning coverage algorithm [[IO1f], [[102]. Finally, we
use the simple stroke order of painting the infill of each
shape before its outline, and painting the shapes from
back to front, i.e. the shape furthest in the background
is painted first, and the shape closest to the foreground
is painted last.

Future works may consider algorithms such as hidden
line removal or hidden surface determination [103] to
reduce the paint which is wasted on occluded regions
and reduce the number of paint color changes required
by painting all of the same color at once.
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XIV. GENERATIVE MODELS FOR PAINTING
TRAJECTORIES

Leveraging recent advancements in generative models
for creating robot trajectories has been of great interest
recently. With the successes of image diffusion models
and large language models (LLMs) which can generate
remarkably good results to remarkably diverse input
scenarios, many roboticists are now excited about the
potential of these approaches in enabling robots to
operate with less structured information, more human-
like intuition, and natural language interaction. Seminal
diffusion policy papers [99], [[100], [[104] show diffu-
sion models can apply to robot motions. Meanwhile,
seminal embodied LLM papers [89]], [90] show LLMs
are adept at high-level planning [[105]], although direct
action prediction using LLMs remains less mature (so
we will not make use of LLMs for trajectory generation
directly, but may use their multi-modal capabilities for
image interpretation).

However, obtaining the requisite extremely large scale
datasets needed to train these models is a challenge for
many robotic tasks [93], [106]. For example, generative
image models such as DALL-E 2 and StableDiffusion
rely on the CLIP model (which was trained on a dataset
of 400 million image-text pairs) to correspond text to
images, and some experts believe that the state-of-the-
art LLMs are trained on the entirety of the internet’s
high-quality data. Even the recent robotic manipulation
dataset “Open X-Embodiment” [[106], a collaboration
across dozens of academic institutions, contains on the
order of only 1 million trajectories (compared to the 400
million of CLIP or estimated 13 trillion for GPT-4). Gen-
erating sufficient data to correspond robot trajectories
to another modality is a major roadblock in applying
generative models to create robot trajectories directly,
without an intermediate policy for specific tasks.

We propose circumventing this roadblock for robotic
art by leveraging infilling (Section [XIII) and pre-existing
SBR work as a bridge between robot trajectories and
generative pixel-based art, which has large amounts of
data and pre-trained models freely available for cor-
responding images to text and other modalities. We
anticipate that the pair will enable novel results in gen-
erating robot trajectories from text and other high-level,
abstract descriptions. The inspiration for this research
stems from the intriguing intersection of visual infor-
mation and motion that painting offers. By leveraging
the extensive body of work in text-to-image synthesis,
we aim to bridge the gap between textual descriptions
and robot trajectories. This approach not only offers a
novel perspective on robot motion generation but also
taps into the vast potential of existing research in the
text-to-image domain.



A. Proposed Approach

We propose training a trajectory diffusion model
conditioned on artist intents (text and/or sketches) us-
ing unlabeled painting trajectory data augmented by
compositional techniques and rendered image language
correlations. In this section, we will outline the proposed
approach with preliminary justifications as well as alter-
native implementation choices to investigate.

Architecture: 'We intend to use trajectory diffusion
with classifier-free guidance [[107] as in Decision Dif-
fuser [[100]. Diffusion strikes a good balance between
expressiveness and ease of use (as compared to GANs
and VAEs), especially for the natural coarse-to-fine
structure of visual art. The temporal convolution ap-
proach in [[100] also allows for arbitrary-length trajec-
tory generation. The choice of classifier-free guidance
over guided diffusion is less obvious, but the difficulty
of evaluating style on noisy samples [107] combined
with the slightly improved performance demonstrated in
action planning [[100] suggests classifier-free diffusion
may be superior. Inference-time guidance may still be
considered, for example to satisfy auxiliary conditional
objectives not trained on or to apply diffusion in the
image space and constrain on trajectories simulated by
a differentiable renderer from Section As compared
to auto-regressive approaches, diffusion models may be
easier to train.

Training Data / Generating a shared language embed-
ding: Training data in the form of artistic trajectories
already exists in various forms but is (1) not labeled
with the information we seek and (2) low quality. For
example, the #000000book (“black book™) [[108] con-
tains > 70000 trajectories of (unlabeled) graffiti tags
and Google’s Quick, Draw! [74] contains 50 million
doodles of 345 object classes, but neither contain stylistic
annotations and both are composed of line drawings
as opposed to full artworks. Therefore, our biggest
challenges are 2-fold: (1) corresponding the trajectories
with the semantic information we seek and (2) improving
the quality of the data.

Two directions for generating a shared embedding
between trajectories and language are:

1) Stroke-Based Rendering (Text-Image—Path):
Stroke-based rendering (SBR) enables generating
painting strokes that produce a desired image. Ap-
plying SBR to the outputs of pre-existing image dif-
fusion models could produce robot trajectories cor-
responding to image diffusion model inputs through
the text-image-strokes pipeline. One major limita-
tion of this approach is that SBR traditionally makes
a series of small, point-like strokes rather than the
large, brush-like strokes that are the more natural
and characteristic of graffiti strokes we seek.

13

2) Painting Simulation (Path-Image-Text): Start-
ing from an unlabeled dataset of painting strokes,
we can render how the strokes would appear if
painted then correspond the images with text via
existing shared embeddings such as CLIP [84]
or with a vision-language model such as GPT-
4V [109]. Furthermore, a differentiable renderer
could be combined with a diffusion-based planner
in place of a traditional optimizer, combining the
approaches in [83]], [99]. This approach represents
the opposite pipeline as the previous approach:
strokes—image-text.

The Path-Image-Text approach appears more
tractable given the difficulty of high-quality SBR.
Although the opposite approach would likely enable
more diverse data, higher quality textual understanding,
and a potential alternate conditioning method (condition
on an image), these may be partially offset by multi-
modal LLMs [109], [110] which can now enable
labeling images with high-quality textual descriptions.

If time permits, the quality of the data may be
improved by augmenting the trajectory data with the
procedurally generated compositions from Section
Alternatively, the Text-Image—Path approach may have
the potential to generate higher quality data since the
resulting simulated images emulate full artworks instead
of line drawings. Instead of generating additional train-
ing data, HITL-TAMP [[111]] gives evidence that keeping
the classical stroke planner from Section [XIII| while
using a learned model for creating strokes may be a
more efficient way to learn to paint. Finally, preference
learning and representation learning have been shown
to generalize trajectory quality ratings to new styles
[112], which could be used to curate a dataset of good
augmentations or SBR, even across different graffiti
styles.

Disambiguating Style and Content: In addition to text
prompts, we may also seek to learn style embeddings
that can be extracted from images and conditioned on.
Although style is difficult to quantitatively define, several
proxies may be considered:

1) Language: Language can naturally describe both
style and content (e.g. “Paint a cat in the style of
Picasso”), so with a sufficiently strong textual em-
bedding, our approach may be able to disambiguate
style and content.

Neural Style Transfer: Neural style transfer (NST)
[22], [[113] is a popular technique for transferring
the texture from one image to the content of another,
but is most commonly understood for images. [114]],
[115] approximate the NST optimization with a
trained neural network conditioned with a FiLM-
like approach. Assuming texture to be a good
approximation for style, NST with FiLM could

2)



be applied to produce a conditioning space which
could more easily be correlated with language than
raw images or trajectories.

Artist Embeddings: If we have sufficient amounts
of trajectory data labeled by artist identity, an artist
embedding could be learned to discern the styles of
different artists a la [[116], and interpolating through
the embedding space could produce trajectories in
various styles.

3)

Due to the lack of artist attribution in the datasets, the
NST approach is favorable over the artist embedding ap-
proach. We also anticipate stylistic language descriptions
to be learned with a sufficiently large (unlabeled) dataset.
Nevertheless, we hope to study how other disentangling
approaches may be used to isolate artist intents in the
trajectory or image space.

XV. GENERALIZATION TO BRUSH PAINTING
MEDIUM

Thus far, our work has focused on graffiti spray paint-
ing whose rendering model is very simple: paint shows
up as a rounded line with thickness. Through experi-
mentation in Chapter [2] we found that for most nozzle
shapes, high-quality artist spray paint brands (Montana,
MTN, or Black), and the right speed, the paint dispersion
pattern is sufficiently uniform that the paint can be
assumed to make a solid circle around the center point
of the nozzle whose diameter is directly proportional to
the distance from the canvas. Furthermore, in Chapter
we have honed our cable robot sufficiently that any
specified path can be accurately executed/replicated with
an appropriate speed. Therefore, we have made the spray
painting model no more challenging than traditional
drawing models used in generative models for “doo-
dles”/sketches/markers which use the same “line with
thickness” model [73]]. However, we are still interested
in the more complex dynamics associated with robot
embodiment and different mediums.

To show our approach can generalize to more other
robot applications, we propose extending our approach to
brush painting. Specifically, we focus on the calligraphy
problem, to study how complex brush dynamics can
be modeled and optimized over long time horizons
without lifting the brush. Brush painting has a complex
mapping from trajectory to image and an inverse map
does not necessarily exist. Style is also heavily present
in calligraphy, with many believing one’s writing is a
reflection of one’s personality and temperament and with
some per-calligrapher datasets available on Kaggle and
Github. Incorporating both the brush and robot dynamics
into the generative model will be challenging, but we
believe the approach will be more representative of other
robot applications.
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Observations of artists suggest that medium transfer is
both feasible and artistically utile. We have observed that
many artists draw differently on an iPad than with spray
point or with brushes. However, highly trained artists
can be simultaneously proficient in multiple mediums:
capable of expressing the same idea in multiple mediums
and even emulating a variety of styles on a variety
of mediums. Nevertheless, we posit that artists have
preferred mediums and must learn to adapt their style to
other mediums. The fact that artists have preferred medi-
ums presents an accessibility motivation for designing
a system to transfer artwork across mediums: opening
up new mediums to artists can enable new avenues of
expression, creativity, and collaboration. Simultaneously,
the fact that artists have the ability to train to express
the same compositions in different mediums suggests
that the task of transferring artwork across mediums is
feasible.

The data generation component of our aforementioned
approach will be modified by extending the work of [9]
by using a deep-learned brush model in place of the
hand-crafted one. In contrast to previous works which
take images of completed brush strokes, we will take
videos of brush itself during painting to capture its
shape dynamics. By collecting video data from multiple
viewpoints of a brush executing various strokes, we
propose training a recurrent neural network to predict
the state (shape) of the brush given the previous state
and relative motion. The state will be represented as
a latent vector and the observed camera viewpoints
will represent observed measurements. To then virtually
render a painting for a given brush trajectory, we predict
the contact patch of the brush with the canvas at each
time instance and combine across time steps to produce
a rendered image.

XVI. SUMMARY

In conclusion, this chapter sets the stage for a ground-
breaking exploration into the direct generation of robot
trajectories for artistic painting motions. By leveraging
generative models and building upon existing text-to-
image research, we aim to redefine the boundaries of
robot motion generation in the artistic domain.



Chapter 5: Sample Applications

XVII. PUBLIC PAINTING ON THE LIBRARY

This project, in collaboration with Georgia Tech
Artist-In-Residence Tristan Al-Haddad, aims to create
a large-scale mural on a 2-story, 5S0m-wide bank of
windows on the north elevation of the Price Gilbert
Library (Fig. [T1] left) using our graffiti painting cable
robot. Due to ventilation limitations, we replace the spray
paint end-effector with a serial manipulator-mounted
paint brush (Fig. [TT] right).

The project showcases our cable robot’s ability to
paint large-scale artworks with mediums other than just
spray paint. It attests to the ability of our replication
and rendering pipeline to reproduce a variety of motions
at a vastly magnified scale, and to the robustness and
reliability of our robot painting platform.

XVIII. NON-DESTRUCTIVE PLANT PHENOTYPING

This project, in collaboration with the Nutrients, En-
ergy, and Water (NEW) Center for Agriculture Technol-
ogy led by Professor Yongsheng Chen, applies our cable
robot platform to hydroponic plant monitoring [I17].

Using our cable robot, we enable high-accuracy,
medium-througphut non-destructive plant phenotyping:
a compromise between traditional high-throughput low-
accuracy drones and low-throughput high-accuracy
turntables. Because our painting robot scales well to
large sizes, we can replace the spray paint can with a
manipulator-mounted camera to monitor plants in large
hydroponic systems. The cable robot enables covering a
large workspace while the manipulator enables close-up
inspection of individual plants from a variety of view-
points. At our small-scale pilot site, we autonomously
captured 150 images for each of 56 plants every day for
6 weeks without any human supervision or intervention.
Using the images, we computed 3D reconstructions
which were used to estimate plant mass as the plants
grew to help scientists in the NEW Center develop better
plant growth models.

The system evidences how developing a large-scale
robot platform for painting has incidental applications in
unexpected domains. It also demonstrates the robustness
of our CDPR control and estimation algorithms, which
effortlessly adapt to the high-stiffness, low-speed, long-
term operation of plant phenotyping.

Both sample applications employ a serial manipulator
on the low-stiffness cable robot end effector, for which
future work could employ a closed-loop controller to
stabilize the brush tip / camera similar to and/or
input shaping of manipulator movements to minimize
nominal cable robot oscillations.
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Chapter 6: Conclusions

I have proposed studying the task of robot graffiti
painting in 3 parts: rendering, replicating, and adapting.
These tasks are a natural progression towards the overall
objective of creating an embodied Al artist that can
receive high-level artist inputs and produce graffiti art
with paint. Furthermore, each of the parts require solv-
ing novel robotics challenges with applications beyond
graffiti painting.

Through my proposed thesis, I will contribute to the
body of knowledge in multiple fields. In addition to the
field of robot art, I will make technical contributions
to cable robot control, motion planning, and generative
modeling. Finally, through collaborations, I also con-
tribute to plant phenotyping research and public art.

Robot Graffiti exemplifies artistic expression and robot
ambition. Between creating a new, accessible avenue
through which artists may make public statements and
pushing the boundaries of robot capabilities, the pro-
posed thesis forms a cohesive, important, and well-
scoped contribution to the field of robotics.

Fig. 11. Left: The bank of windows at Price Gilbert Library we will
paint a mural on. Right: The cable robot positions a wooden carriage
on which a serial manipulator with brush is mounted.

Fig. 12. Left: Our cable robot system with manipulator-mounted
camera monitoring plants in a hydroponic system. Right: A sample
point cloud of a plant.
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APPENDIX A
CABLE ROBOT ADDITIONAL RELATED WORKS

In this appendix we describe related works for CDPR
state estimation and tracking control in more detail.
Further reading can also be found in [3[], [27], [49]

CDPR State Estimation Related Works

Given existing calibration parameters ©, pose estima-
tion is the forward kinematics problem of estimating
end-effector pose from motor joint angles. As com-
pared to serial robots where forward kinematics (FK)
has a closed-form expression while inverse kinemat-
ics (IK) can be computed using numerical optimiza-
tion, CDPRs (which are parallel robots) are exactly
the opposite: IK has a closed-form expression while
FK is most often computed by solving a nonlinear
least squares (NLS) problem online, of the form 7°*
argming |[IK(T;©) — 1(6;©)|* where T* is the esti-
mated pose, I K computes the inverse kinematics, and [
computes the cable lengths given the motor angles 6. Al-
though this NLS problem can be solved very efficiently
using Gauss-Newton iteration in fewer than 10 steps
even with a very naive initial estimate for 7' [27]], there
can occasionally be multiple local minima representing
multiple valid poses for the same cable lengths [27]]
(analogous to redundancy resolution in serial robots).

Offline self-calibration, in which we seek to compute
kinematic, statics, and dynamic parameters, is largely
divided into perturbation [28], [29] vs passive measure-
ment [30], [31] techniques. The kinematic parameters in-
clude (a) affine, linear (winch radius), and nonlinear pa-
rameters in the mapping of motor angle to cable length,
and (b) cable attachment points on the static frame and
moving end-effector. The static and dynamic parameters
include cable stiffness/damping, friction coefficients, and
motor and end-effector inertias. Perturbation techniques
involve making small cable length or tension perturba-
tions one cable at a time and measuring the responses in
the other cable lengths/tensions to measure a numerical
approximation to the Jacobian at that configuration.
Depending on the set of parameters known vs sought, the
procedure can be repeated at other configurations as well
to obtain the kinematic parameters. Passive measurement
techniques involve passively collecting the cable lengths
and tensions while the robot is moved, and solving an
optimization problem to compute the parameters, since
the measurements are constrained by equations condi-
tioned on kinematic, static, and dynamic parameters.
Perturbation techniques can be dangerous and obtrusive
to the application of the cable robot, since the robot
needs to perform set motions before it is calibrated which
may interfere with the application e.g. through collision
or interrupting motions when recalibration is needed.
Passive measurement techniques allow calibration to

21

be performed while the robot is performing its usual
motions for the application, but may be less accurate
and requires additional considerations to be applied to
online, continuous calibration.

Online continuous calibration [[119] is desireable for
long-term and robust operation of CDPRs, especially
since cable properties can drift with environmental con-
ditions and wear, and winch winding parameters may not
be tightly controlled in low-cost winch designs. Online
continuous calibration is implemented as an extension
of passive measurement calibration, in which the passive
calibration is periodically re-done on fixed intervals or
when a calibration quality metric threshold is reached, or
in which the parameters are continuously updated using
a Bayesian filter. Both suffer from the same issues that
diverse measurements across the workspace is needed to
avoid poorly conditioned data, so special considerations
are needed to ensure that sufficiently diverse measure-
ments are collected and saved.

CDPR Tracking Control Related Works

Tracking control for CDPRs has been well studied
since at least the late 1980°s and has progressed from
simple joint-space methods to advanced nonlinear, adap-
tive, and robust methods. The earliest examples of CDPR
tracking control commanded position-controlled servos
to the cable lengths computed by inverse kinematics, but
these require tedious, critical calibration and are sensitive
to modelling errors [120]. More advanced model-based
techniques include operational-space PID, feedback lin-
earization, sliding-mode control (SMC), linear quadratic
(LQR and LQG), and MPC, among others [121]]. Linear
approaches (e.g. PID) with feedforward terms to handle
most of the nonlinearity are perhaps the most common
(32], [41], [122], [123], but the use of static gains
can make them sensitive to operating point, leading
to non-uniform performance across the workspace and
lack of foresight when approaching control limits [34].
Feedback linearization approaches have seen success in
suspended cable robot designs but require special con-
siderations for redundantly actuated CDPR [34], [[124]—
[126]. Feedback linearization may also face difficulties
modeling control limits. SMC [33]] is perhaps most
popular nonlinear approach for robust CDPR control,
but is prone to chattering [127] due to control dis-
continuities. Although reducing chattering issues has
been studied by several works [128]]-[[132], chattering
does not appear to be completely resolved and these
methods rely on adaptive algorithms to fallback onto
linear controllers which, again, may not be workspace-
aware. LQR and LQG have been primarily applied as
tuning techniques for other controllers (e.g. tuning SMC
[133] or feedback linearization gains [[125]]) and therefore
inherit their limitations. Furthermore, applying LQR



and LQG to systems that have been “pre-linearized”
by other approaches tend to use fixed gains obtained
using the infinite horizon LQR solution [[133], [134].
Linear [135]] and Nonlinear MPC [136[]-[|138]] are highly
capable in providing consistent and robust performance
near or even outside workspace boundaries [34], but
MPC poses implementation challenges and must often
make convexifying approximations to guarantee online
convergence [34].

Ideally, a control scheme would combine the accuracy
and robustness of MPC approaches with the simplicity
and ease of implementation of linear approaches.
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APPENDIX B
CABLE ROBOT CONTROL AND ESTIMATION DETAILS

In this appendix we describe additional mathematical
details about CDPR state estimation and control using
factor graphs.

We will attempt to describe the most pertinent con-
cepts about factor graphs as we go, but additional intro-
ductions to factor graphs can be found in [46], [139].

A. Trajectory Generation

We seek to track the reference trajectory while also
maintaining realizable control inputs. Least-squares ob-
jectives are used to minimize both the tracking er-
ror, T x — 2, and the control input objective,
4 = U — Umsg, Where % is the desired trajectory and
Upnid = %(umm + Upmae) as described by [140] as
an approximation for maximizing the margin to control
limits. Constraints are given by the system dynamics.
Our trajectory generation problem can then be expressed
as in Fig. which graphically depicts the trajectory
generation problem as both a factor graph and the
equivalent constrained nonlinear least squares problem:
eq. (ZI). The pose and twist, T, V, make up « and the
tensions, 7y, 71, T2, T3, make up wu.

We use the software library Georgia Tech Smoothing
and Mapping (GTSAM) [141] to create and ‘“solve”
our factor graph, where “solve” is used to mean com-
puting the solution to the equivalent constrained least
squares problem. We use the Levenberg-Marquardt opti-
mizer with variable elimination for the inner-loop linear
solver (default solver in GTSAM). It can be shown
that Levenberg-Marquardt with variable elimination is
identical to iLQR as described by [48§]], although we run
this optimization offline. As a result, feasibility (incl.
control limits) and optimality can be checked prior to
executing on the robot.

The computed solution to the factor graph is the
nominal, feedforward trajectory and denoted x*, u*.

B. Control

We use a time varying linear-quadratic regular (LQR)
for our controller which is computed by linearizing the
system around x*,v* and applying variable elimination.

a) Linearizing the graph: The linearization process
is automatically handled by GTSAM, but mathematically
it equates to applying a first-order Taylor expansion
around z*,u* to convert the general optimal control
problem @2I) (which is transcribed as a constrained
nonlinear least squares optimization) into the LQR prob-
lem (which is transcribed as a constrained linear
least squares problem). Upon linearizing, we will define
0y =z — o}, and Suy ‘= up — uj,.

The result of linearizing is a graph with the same
structure as in Fig. [13| except with all the factors repre-
senting either linear constraints or quadratic objectives.



State Objective Factor (%7 Q%)
Control Cost Factor (%" R)
Initial State Factor (x[0] = x,)
Kinematics Factors ([39, Eq. 1])
Cable Tension Factor ([12, Eq. 1])
Winch Factor ([12, Eq. 20])
Wrench Factor (|12, Eqgs. 18])
Collocation Factor
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s.t. Tr+1 = fe(xg,ug), VeE=0,...,N—1, (2Ib)
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Fig. 13. Factor graph describing the full cable robot kinematics, dynamics, initial state, and state/control objectives, together with the equivalent
optimization problem description (lower right). The kinematics and dynamics constraints, which are represented by square factors and make up
@T0): xx+1 = fr(xk, ug), are defined according to standard cable robot literature. For example, the orange cable tension factor encodes the
constraint Wt = F where W is the wrench matrix computed from the pose T'. Example references are given in the legend. T" denotes the pose
of the end effector; V denotes the twist of the end effector; V denotes the twist acceleration of the end effector; I;,1;,1;,t; denote the length,
velocity, acceleration, and tension of cable 7 respectively; 7; denotes the torque commanded for motor ¢; and F; denotes the wrench applied

to the end effector by cable <. Time indices are omitted for notational clarity. Together, T,V make up the state « and the torques 7o, ...

make up the control u.

Mathematically, the linearized graph now represents a
linear least squares problem (with linear equality con-
straints) which can be efficiently and exactly solved us-
ing variable elimination (which is equivalent to standard
sparse linear algebra algorithms).

b) Variable Elimination: We first give a brief intro-
duction to the variable elimination algorithm, then show
how it can be applied to extract LQR gains from our
linearized graph.

The variable elimination algorithm is nothing more
than an algorithmic method of solving for a variable and
substituting the solution expression back into the system
of equations. Although GTSAM handles elimination for
us, we can briefly summarize its underlying computation
for linear problems as performing the block QR factor-
ization on a subsystem:

I
z

i 22l

Mo

where M, b describes a linear least squares problem, y
are the variables we seek to eliminate, z are the remain-
ing variables (formally, z is the separator: set of vari-
ables not in y that share a factor with any of the variables
in y), and @, R, S, A,d are results of the factorization.
The top row encodes the solution y = Rl_ll(dl — S192)
and the bottom row encodes the remaining system after
substituting the solution for y back in: A,z = ds. In
other words, factorization is equivalent to solving for a
variable and substituting it back into the original system.
A comprehensive description of the variable elimination
algorithm can be found in [46] for interested readers.

My
Moo

by
by

S12
A,

dy
do
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From the linearized graph, we first apply variable
elimination to eliminate all variables except dx,du,
meaning we eliminate y = {5l76l',(5i', ot,0F, (51')} but
leave z = {67, 6V, 67} (for every timestep). Reiterating,
this is equivalent to solving for y first and substitut-
ing back into (22). After eliminating y, the resulting
graph/system for z will have the form of Fig. [I4] which
can be equivalently described by the linear least squares
problem (22). Also note that the computer has performed
all the algebraic manipulation for us. Introducing e.g.
additional parameters, periodicity constraint factors, and
state-dependent control limits are all possible with min-
imal designer effort.

Finally, we can also use variable elimination to derive
the well known result of linear-quadratic control [142]]
that the solution du*(dx) can be expressed as the linear
control law:

5u}§(xk) = Kk556k (25)

Notice that, since z*, u* satisfy 1)), they are also guar-
anteed to satisfy (22). Thus when 0z = 0, duj(0) =0
so the affine term is zero.

To obtain the LQR gains, K}, from the linear graph in
Fig.|14] we eliminate the states and controls one at a time
in the order dzy,duny_1,0xN_1,...,0uq,dxg. It was
proved in [44], [45] that this variable elimination process
produces the finite horizon discrete LQR solution. As
a brief intuition for the proof, this elimination follows
the standard logic (backward induction on the Bellman
equation) for deriving the finite horizon discrete alge-
braic ricatti equation: given the value function for x4 1,



N—-1

6u™ (o) = arg min INQNEIN + D Fp QuFk + Gf R
ou k=0
(22a)
s.t. 0rp41 = Adxy + Béuy, Vk=0,...,N -1,
(22b)
dxg =0 (22¢

Fig. 14. After linearizing Fig. and applying variable elimination
to eliminate all the variables that are neither state nor control, we
obtain this LQR graph (almost identical to Fig. E]), which can be
equivalently represented as (22). Green and navy blue factors represent
state and control costs respectively, red-outlined-black factors represent
dynamics constraints, and the purple factor represents the initial state
constraint.

Fig. 15. Variable elimination is used to compute the optimal time-
varying feedback control law starting at the final timestep and elim-
inating back to the beginning. This diagram depicts eliminating two
variables: dx3,dus. The blue factor is the cost that gets propogated
upon ‘“‘substituting” the optimal value back into the system, which
makes up the value function.

N—-1

D> IHidwr — zll2y s
=0 4 16w — su” |3,
+ ||6xky1 — (Ardzi + Bkéuk)HZ
(23a)

& = arg min HM:()H;U +
ox

vy, ~ N(0,75%)
ok ~ N(0,7y,)
wy ~ N(0,%Zy) (24b)

Sxpi1 = Ardzk + By (Suk + vy,) + vk, (242)

Sz = Hpdxzp + wy

Fig. 16. Nonlinear estimation factor graph (top) and the linearized
estimation problem expressed as a minimization problem (middle) and
system (bottom). After linearizing, we introduce the variables dz =

* * . * ._ Ohy
z —z* and 2* = h(z}), and Hy = I

.
Tk
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solve for the u; which minimizes the value function then
substitute uj, back into the value function to obtain the
new value function for z;,. Fig. [I5] visually illustrates the
elimination process.

C. Estimation

We can express our estimation problem by converting
the factor graph in Fig. [I3] to replace controls factors
by estimation factors, followed by linearization and
marginalization.

a) Estimation Factor Graph: To convert from the
optimal control factor graph to the estimation factor
graph, we make the following factor replacements:

szkfk N |hr(2r) — ZkHEz;l
(state cost) (stochastic measurement)
Tpy1 = f(@p, ur) N f(ffk»uk)”gz:;l
(dyn. constr.) (modelling uncertainty)
- - 2
aj Rytig . lur — ullag s
(control cost) (input disturbance)

where [|O||s;—: == 07270 denotes the Mahalanobis
norm; zj = [lk,ik] denotes the measurement vector
at timestep k; u; and wu; denote the commanded and
realized control torques vectors respectievly; h(xy) de-
notes the inverse kinematics to compute the cable length
given the state; and *X, dE, 43 denote the measurement,
dynamics, and input covariances respectively.
The factor graph now represents the system:

v ~ N(0,75}) (26)

vr ~N(0,%5) (27)
wg ~ N(O, sz) (28)

Th4+1 = f(wk,uk + ’U;€) + Vk,

2 = h(xk) + Wi

b) Linearization: Next, we linearize and eliminate
the intermediate variables the same way as in Section
to obtain the factor graph shown in Fig. [16] which
is equivalent to the system in Fig.

After linearizing, vj can be combined with v; by
applying the transformation:

—1

(29)
(30)

0xky1 = Axdzy + Bk((Suk + v%)
= Apdxi + Brouy + Bkvk

where v}, ~ NV(0,9%) so v ~ N(0, (B “%'~1B;,)~1)
and %), = (BF “¥'~1B;)~'. This is useful because
most disturbances in our CDPR setup come in the form
of parasitic torques/tensions in the cable as opposed to
external wrenches acting directly on the end effector.
Meanwhile, removing v;, simplifies the factor graph and
the notation.



¢) Marginalization to Extract Kalman Gains: We
now seek a Kalman Filter to estimate @, = FE[dxg].
Specifically, we would like to pre-compute the Kalman
Gains for this filter to avoid needing to compute them
online. Although, to the best of our knowledge, factor
graphs cannot directly extract the Kalman Gains the
way we were able to extract the LQR gains, they can
nevertheless get us most of the way and provide intuition
for the final expression.

First, we can use marginalization to compute all the
a priori and a posteriori covariances. In these cases,
marginalization can be computed by simply eliminating
every variable other than the one we seek the marginal
of. Fig. and show how variable elimination is
used to compute the new covariances after predicting
and updating respectively. This computation is handled
by GTSAM offline and X9, X1,...,XNN-1, 2N are
the only results we need for the next step.

We now obtain expressions to compute 2 given the
covariance matrices we just computed. The equation to
predict &y, is straightforward since all noises are
Zero-mean:

Tpip—1 = ArZr—1 + Broug_1. 31)

The equation to update Zj is less obvious, but
more intuitive by observing Fig. the optimal esti-
mate for dzj in Fig. is the one which makes the

. . 2
best compromise between Héxk ka‘k_lHZ_l and
klk—1

||Hidzy — 5zk||32—1. We expect the optimal choice of
dxj, to be a weighted mean of the two factors, and indeed
with a bit of algebra it can be proven that it is:

-1

60 = s = 0k~ dueiacy

+ || Hy by — 5zk\\32;1
S Xy iy = Sag X B + 0xy Hy "5 0z
E;ljk = E}Zﬁgflik\k—l + HkTZE,:lJZk
SEk = Ek (Z;ﬁc_li’kw_l + H522;15Zk)

(32)

Finally, the predict and update steps can be combined
to form a single state estimator update equation:

T ="Kydp—1 + “Kpoug_1 + Koz (33)
where K = Ek’E;;ZilAlm YKy = EkE;|ZilBk’

and Ky, .= S, HF ZEI;I/ * are pre-computed offline.
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=

18, = (Ax8k—y + Biug—o) g1

[6t;1 — 0ui gy

Fig. 17. Kalman Filter “Predict” step eliminates dxg_1,dui_1 to

obtain X _1.

N
:>

Fig. 18. Kalman Filter “Update” step eliminates dx to obtain Y.



APPENDIX C
EXPRESSING CABLE ROBOT CONSTRAINTS IN THE
TASK SPACE

To convert joint-space constraints to task-space con-
straints, we can leverage the kinematics of our ca-
ble driven parallel robot. Whereas serial manipulator
kinematics are defined by « Jqg so transforming
task-space constraints to joint-space is straightforward,
cable robot kinematics are defined by ¢ = W7Ta (or
equivalently 7 = Wt) where W is the wrench matrix
[140] so transforming joint-space constraints to task-
space is straightforward. The procedure is outlined as
follows. The inverse kinematics for our CDPR are given
by the closed-form expression g(s) = || Tb — a|| where
a,b € R3*™ are the attachment points of the n cables
to the robot base (in the world frame) and end-effector
(in the end-effector frame) respectively and T'b denotes
coordinate transformation. Then, ¢ W (T)"z and
G = W(T)'x where W;(T) = [u;;b; x u;] is the
it" column of the wrench matrix [140]. ¢(s) is a linear
function of @(s) and easy to compute analytically given
T, so clearly motor speed constraints can be expressed
in the form of (7c). Finally, the equations of motion and
torque constraints for the cable robot are given by

M(s)E +2TC(s)x +g(s) = F =W(s)t (34
LG + Fi(4i)gs + Rt; = 7 (35)
TELT. (36)

Substituting ¢ and ¢ into (33) then solving for ¢; to
substitute into (34) often yields a constraint in the form
of (7b). While F;(q;)g; cannot always be turned into the
quadratic form of , common forms can be handled.
For example, static friction modeled as fssign(g;) turns
into a constant since we know a priori the path ¢(s)
and therefore also the sign of ¢;. Viscous friction,
approximated f,¢;, will introduce a linear term in &,
but by completing the square (requires inverting C(x))
and reparameterizing &' := &+ %C’1WWT, this can
also be turned into the form of taking care to carry
this forward oneself for the remainder of the derivation.

APPENDIX D
FACTOR GRAPH LP SOLVING DETAILS

As a brief background on factor graph elimination,
an optimization problem can be described with a factor
graph by denoting each of the variables to be optimized
as a “variable” node and each of the optimization objec-
tive terms and constraints as a “factor” node, where an
edge connects each variable a factor depends on. Then to
solve the optimization problem, the variable elimination
algorithm states to “eliminate” (solve) one variable, =z,
at a time, passing its constraints and objective terms
as a new factor on the separator, S(x): the set of all
variables sharing a factor with the eliminated variable.
A more complete description of factor graph elimination
for solving optimal control problems can be found in
[45]], [49].

The factor graph for this problem is given in Fig.
As it applies to this problem, factor graph elimination
would proceed eliminating one variable at a time in
the order wug,xo,u1,21,...,ZN—1,2N. For example,
following the Reachable set elimination ordering, we
would first eliminate ug by solving the following LP:

ug(xo,r1) = maximize (nothing)

Uo
subject to aqug + boxg + ¢y € %o,
T1 — 29 — 2upAs =0

In this case, although we have no objective function,
the solution is obvious because the dynamics fully con-
strains ug:

1

2As

We then substitute u{ to create a new factor on the
separator S(ug) = {xo, z1}:

ug (2o, 1) = (x1 — xp). 37

agp

2As

Next, we eliminate  in much the same way:

(Il — 330) + boxy + ¢ € 6.

x5(x1) = max 1z (38a)
Zo
t =2 () — 30) + bowo + €0 € G
S.T. 9As T i) oL0 Co 05
(38b)
xg > 0.
(38¢)

For the purposes of variable elimination, consider that
we don’t actually need to symbolically solve this LP,
but instead we just need 2 things:

1) the optimal value of z( as a function of x1, and
2) the resulting objectives/constraints on z; after we
substitute zg = x{(x1).
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For 1, we do not need an analytical expression (yet) so
we just store the conditional as the optimization problem
(38).

For 2, the new factor will consist of an objective
component and a constraint component.

The objective component is easy: we can ignore it
because we will select x; greedily. More formally, our
new objective factor will be xf(z1), but because we
also have a pre-existing factor wz; where w is a very
large number, our new objective term is negligible in
comparison (z§(x1) < wxy).

The constraint component of our new factor can be
solved with 2 LPs the same way as in [69]. Since x;
is a scalar, the resulting constraint on x; will take the
form:

T1,min S €1 S T1,max- (39)

We compute the smallest and largest possible values of

x1 that satisfy (38b), (38¢):
Z1,min, = minimize x; subject to (B80), (38c),

x0,T1
(40)
T1,maezr = Maximize z7 subject to (38D, (38c).
Zo,T1
(41)

These are very easy to solve in just a few dozen lines
of code since we need only optimize over 2, scalar
variables.

After eliminating ug,zo we have Fig. 8] We repeat

the elimination process on ui,Z1,...,TN—1,ZN until
all variables are eliminated. The result is the Bayes Net
in Fig. [0}

Back-substitution: We solve the Bayes Net by back-
substitution. The final elimination step will produce a
marginal on z of the form:

Th = max x
N TN N
s.t. TN, min S TN S TN, mazx, (42)

zny >0

whose solution is clearly 2% = TN maz-

Then, we can compute z3_, = z§_;(zn) by
substituting xy <« 7% into the conditional (I9) and
solving the now single-variable scalar LP (which is
just iterating through the inequalities to find the lower
bound) for zx_1. This process is repeated until all
variables are evaluated, and the resulting sequence
gy T, UG, - - -, Wh—q 18 the solution to (17).
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