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Abstract

In this work, we extend Neural Radiance Fields (NeRF)
from RGB to hyperspectral data to compute hyperspectral
3D reconstructions of scenes from images taken with a hy-
perspectral camera and turntable. Hyperspectral imagery
has been used in many applications to non-destructively
determine the material and/or chemical compositions of
samples, but is typically only used to create a single ag-
gregate measurement of the subjects as opposed to a spa-
tially varying description. Meanwhile, NeRFs have recently
seen widespread success creating high quality 3D repre-
sentations of scenes from images. Leveraging recent ad-
vances in NeRFs, we propose computing a hyperspectral
3D reconstruction in which every point in space and view
direction is characterized by wavelength-dependent radi-
ance and transparency spectra. We present a novel NeRF-
based approach to predict continuous emittance and trans-
mittance spectra instead of scalar volume density and 3-
dimensional color intensity. To evaluate the approaches, a
dataset containing 4 scenes with 48 hyperspectral images
each was collected. We perform comparisons against tra-
ditional RGB NeRF baselines and apply ablation testing
with discrete spectra representations. We show that NeRF
naturally extends to hyperspectral data with minimal in-
crease in computation, minimal decrease in accuracy, and
enables several new potential applications and areas for fu-
ture study.

1. Introduction

Hyperspectral imagery is a useful tool in many appli-
cations for non-destructively characterizing material and
chemical compositions. For example, hyperspectral im-
agery is used in agriculture to assess plant health and nutri-
ent content, in medicine to diagnose diseases, and in drilling
to view otherwise invisible gasses like methane. In con-
trast to typical RGB images which have 3 color channels
for each pixel, hyperspectral images consist of tens to hun-

Figure 1. Instead of 3 color channels for each pixel, hyperspectral
images have many color channels per pixel to measure the color
spectrum for every pixel. In this work, we leverage recent ad-
vances in Neural Radiance Fields to create hyperspectral 3D scene
representations.

dreds of color channels (wavelengths) for each pixel and
typically have little spectral overlap among channels. Be-
cause different materials and molecules have different re-
flectance, transmittance, and/or fluorescence properties at
different wavelengths, hyperspectral data may be used to in-
fer the composition of a sample. However, studying the spa-
tial data in hyperspectral imagery is currently under-studied
for a number of reasons, with many works only using the
“image” part of hyperspectral imagery to select foreground
pixels which are then averaged together.

We believe creating NeRF-based 3D reconstructions of
hyperspectral data may help alleviate many issues associ-
ated with leveraging spatial hyperspectral information. Il-
lumination angle dependence and low signal-to-noise ratio
(SNR) would both be mitigated by fusing information from
many images from different viewpoints. The radiance field
representation also provides a continuous spatial interpola-
tion, in contrast to the sparse point-cloud representations in
traditional SfM or multi-view stereo (MVS) approaches. In
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our approach, we also show how we can use wavelength as
a continuous input to the NeRF allowing interpolation of
not only position and view angle, but also of wavelength.
Finally, we believe NeRF-based approaches may be able
to handle partial transparency and wavelength-dependent
transparency better than SfM approaches.

Our contributions are as follows:

• Collect and share a dataset of hyperspectral images
suitable for hyperspectral 3D reconstruction,

• Identify special considerations needed to accommo-
date hyperspectral camera limitations when computing
NeRFs,

• Present novel continuous representations for radi-
ance and transmittance spectra for use in Hyper-
NeRF training and rendering, with ablations,

• Demonstrate the feasibility of creating hyperspectral
3D reconstructions using NeRFs, and

• Propose new applications of Hyper-NeRFs.

2. Related Works
Hyperspectral Imagery. We defer to the many high-
quality review papers on detailed background and applica-
tions of hyperspectral imagery such as [6]. However, we
briefly motivate the need for hyperspectral 3D reconstruc-
tion and discuss some practical considerations of hyper-
spectral cameras.

Challenges that have been identified in hyperspectral lit-
erature include the black-box nature of correlating spectra
with sample properties [6], the low signal to noise ratio [12],
and the high cost and inconvenience of high-resolution hy-
perspectral imaging. We believe that fusing multiple hyper-
spectral images into a 3D model can help scientists develop
more mechanistic understandings of hyperspectral data and
improve the signal to noise ratio. Further, we believe many
recent advances surrounding NeRFs, such as NeRF in the
Dark [15] and Deblur-NeRF [13], may also help extract
more information with limited sensors.

Although we will not discuss the technical details, there
are a few undesirable properties which are common to
nearly all hyperspectral cameras. First, there is a trade-
off between spatial, spectral, and temporal (exposure time)
resolution such that obtaining a low-noise, high-resolution
image with many wavelength bands will necessarily re-
quire a long (typically on the order of minutes) exposure
time. Second, hyperspectral cameras have narrow fields of
view and are incompatible with standard lenses due to the
wavelength-dependent index of refraction of glass. Finally,
aperture size is typically bounded due to interactions with
order-blocking filters which correct diffraction side-effects.
We discuss how we address these challenges for our dataset.

Hyperspectral 3D Reconstruction. Creating hyperspec-
tral 3D reconstructions from hyperspectral images has been
attempted in the past with point cloud-based methods. [25]
creates separate point clouds for each wavelength chan-
nel then merges them to create a hyperspectral point cloud
while [12] directly performs Structure-from-Motion on the
hyperspectral data. Extending this, [14] designs custom
hyperspectral keypoint feature descriptors for hyperspec-
tral images to aid in 3D reconstruction, while several other
works also address hyperspectral features for image classi-
fication [11]. However, Structure-from-Motion approaches
often generate only sparse point clouds and hyperspectral
imagery may often be too noisy and low resolution to obtain
good multi-view stereo results. [20] takes a different ap-
proach and designs a hyperspectral structured light project
device to measure 3D hyperspectral information. Somewhat
similarly, [9] projects hyperspectral images onto existing
3D geometry models. However, these are not as flexible
as a camera-only solution.

Neural Radiance Fields

Neural Radiance Fields (NeRFs) have exploded [2] in pop-
ularity since the original paper by Mildenhall et al. was
published [15]. NeRFs present a deep-learning approach
to obtaining a high quality 3D representation of a scene by
learning a function mapping the location of a point in space
and the direction from which it is being viewed to color ra-
diance and volume density. To determine the color a pixel of
an image should take, a rendering step queries the function
along the pixel’s corresponding image ray and composites
the colors according to classical volume rendering [15]. A
large body of works has since extended and improved upon
the initial NeRF paper.

Although no NeRF works to our knowledge directly
tackle the hyperspectral 3D reconstruction problem, we di-
rectly leverage several advancements such as the substan-
tial efficiency improvements from Instant-NGP [16] and the
open-source nerfstudio package and nerfacto implementa-
tion [18] which we build our implementation upon. We
also draw inspiration from many related works. For exam-
ple, several spatio-temporal [19, 3], deformable, and other
NeRF works [5] append a scalar time variable to the 3D
location input similar to an approach we compare against
concatenating wavelength to location. Similarly, Zhi et
al.’s semantic NeRF work using implicit scene representa-
tions for semantic super-resolution [24] inspires our con-
tinuous wavelength representation for hyperspectral super-
resolution.

Several works could also complement our work well and
we hope future research can incorporate their techniques
for Hyper-NeRF. For example, RawNeRF [15] and NAN
[17] both leverage NeRF’s information fusing ability for
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low-light denoising which could help reduce the exposure
time required. RawNeRF applies post-processing on the
NeRF instead of the input photos, which could be applied
to mitigate artifacts of hyperspectral cameras such as order-
blocking filter interference. AR-NeRF [8] and Deblur-
NeRF [13], which address depth of field/defocus and mo-
tion blur, respectively, could also be useful given the long
exposure times and aperture limitations of hyperspectral
cameras.

Hyperspectral Super-Resolution. Evidenced by numer-
ous papers, datasets [1], and competitions [4], the hyper-
spectral super-resolution task has become increasingly pop-
ular. Hyperspectral super-resolution may refer to obtain-
ing more wavelength resolution (i.e. use an RGB or multi-
spectral image to predict a hyperspectral image), obtain-
ing more spatial resolution (i.e. use a low-resolution hyper-
spectral image to predict a higher resolution one), or more
commonly fusing together information from complemen-
tary sensors [7, 1]. Perhaps the most similar to this work is
[22] which uses an implicit neural representation to predict
a higher resolution image using a continuous function map-
ping pixel coordinate to color. We extend their work to 3D
and put it in the context of NeRFs.

We are also proud to publish our 4-scene dataset; one
plausible reason for the relatively greater popularity of hy-
perspectral super-resolution over hyperspectral 3D recon-
struction is the lack of publicly available datasets for the
latter.

In summary, we believe our work is highly complemen-
tary to existing works and supports a promising new direc-
tion of research in 3D hyperspectral reasoning.

3. Hyper-NeRF

We build our implementation of Hyper-NeRF upon nerf-
studio’s “nerfacto” implementation [18]. Figure 2 illustrates
original and modified radiance + density prediction block of
the network.

As compared to a (H,W, 3) RGB image, a hyperspectral
image can be represented by a (H,W,N) tensor, where H
and W are the height and width of the image, and N is the
number of channels/wavelengths.

Instead of directly predicting anN -dimensional color ra-
diance, we choose to represent color radiance and transmit-
tance both as continuous spectra: functions of wavelength.
We do so by predicting latent vectors which represent pa-
rameters of learned spectral plots which can then be evalu-
ated for a given wavelength.

In this section, we describe the math formulations and
implementation details, though we also discuss and com-
pare alternatives in Section 5.4.
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Figure 2. We base our implementation of Hyper-NeRF on nerfstu-
dio’s “nerfacto” implementation [18]. Since we do not change the
overall architecture, shown above is just the differences between
the networks that predict radiance and density given position, view
direction, and optionally appearance embeddings and wavelength.
The upper plot is the baseline nerfacto design while the bottom is
our Hyper-NeRF design.

3.1. Color Radiance Spectrum Prediction

Whereas the original and nerfacto networks predict a
3-channel color vector, we choose to predict a continuous
color radiance spectrum.

We predict the continuous radiance spectrum by first pre-
dicting a latent vector ΘC representing the parameters of a
learned spectral plot. We then obtain the radiance cλ for a
given wavelength λ by passing the latent vector together
with the a sinusoidal positionally encoded wavelength λ
through a decoder C. Formally, whereas the nerfacto (base-
line) network outputs the color intensity on a ray as:

C0 : (x,d)→ c := (r, g, b) (1)

where x := (x, y, z) and d := (θ, φ) are the location and
view direction of the ray, respectively, we predict the color
radiance spectrum as:

C : (λ; ΘC(x,d))→ cλ (2)

where Θc(x,d) : R5 → RnΘ is a network that maps the
ray’s location and view direction to a latent vector Θ, and
nΘ is the dimensionality of the latent vector.

Implementation details are provided in 3.4.

3.2. Color Transmittance Spectrum Prediction

Similarly, the color transmittance spectrum describes a
wavelength-dependent volume density. In other words, in-
stead of using a scalar density field to describe the trans-
parency of the scene, we investigate the possibility of using
a wavelength-dependent density field.

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Although wavelength-dependent transmittance can also
be applied to RGB scenes and isn’t strictly necessary for
hyperspectral scenes, it is generally more interesting for hy-
perspectral imagery due to the fact that many materials are
transparent in visible wavelengths but opaque in IR or vice-
versa.

In the original and nerfacto NeRF implementations, the
volume density is given by a scalar function σ(x). Instead,
we choose to model the volume density in much the same
way as for color radiance: a network Θσ(x) predicts a latent
vector Θσ which is passed with the wavelength to another
network

σ : (λ; Θσ(x))→ σλ (3)

where σλ denotes the density at wavelength λ.

3.3. Wavelength-dependent Proposal Network

Finally, when choosing a wavelength-dependent volume
density, it is also natural to make the sample proposal
network (analagous to the “coarse” network) wavelength-
dependent. However, in our ablations, we found that it
wasn’t necessary and caused more training instability. Nev-
ertheless, we encourage others to try since it is likely dataset
dependent.

3.4. Implementation

We find that using both C(λ;ΘC) in place of C0(x,d)
and σ(λ;Θσ) in place of σ(x) without any changes to
the proposal network works well for our experiments and
generalizes to arbitrary wavelength inputs, though we also
present and test several other options in 5.4.

Thus, in our final implementation, to follow the typical
chaining of networks, we apply the architecture shown in
Figure 2. The latent vector predicted by the position MLP
for the density spectrum network is also fed into the radi-
ance spectrum network, but is concatenated with the view
direction encoding and a per-image appearance embedding.
The sinusoidal encoding for the wavelength uses 8 terms
and the latent vector is 24 dimensional. The networks for
C(λ;ΘC) and σ(λ;Θσ) are both identical 2-layer MLPs
with 64 hidden dimensions, with the only difference being
the input dimension to accomodate the radiance’s additional
view direction and appearance embedding inputs.

4. Dataset and Preprocessing

Before being able to train NeRF models on hyperspectral
images, we first collect images using a hyperspectral cam-
era and turntable, apply preprocessing, and obtain camera
poses and intrinsics by running COLMAP on pseudo-RGB
images.

Figure 3. The Surface Optics SOC710-VP camera is mounted on
a tripod and the sample of interest is placed on a turnable in a
Macbeth SpectraLight lightbooth. The camera is roughly 2 meters
away from the scene due to its shallow depth of field and narrow
field of view.

4.1. Data Collection Setup

In this work, we use the Surface Optics SOC710-VP
camera, Macbeth SpectraLight lightbooth, and a custom
turntable using a Dynamixel MX-106T with additional 58:9
gear reduction. The setup in shown in Figure 3. For each
scene, we collect images every 15 degrees of the turntable
from each of 2 camera elevations totaling 48 images per
scene. We collect 4 scenes: two with plants and 2 with a
collection of household objects and color filters.

4.2. Image Acquisition and Preprocessing

As mentioned in Section 2, hyperspectral cameras have
inherent non-idealities that must be accounted for when col-
lecting data. We focus our discussion on the Surface Optics
SOC710-VP camera used in this work, which has high spa-
tial (696 × 520 pixels) and spectral resolution (N = 128)
at the expense of poor temporal resolution (long exposure
time) and extends from 370nm to 1100nm causing some
wavelength-dependent refractive index effects.

First, interactions with glass lenses and diffraction grat-
ings necessitate careful choice of aperture size and lens. In
short, the wavelength-dependent refractive index of glass
(even for IR-corrected lenses) necessitates a small aperture
to keep all wavelengths in focus while diffraction effects ne-
cessitate a large aperture to satisfy the criteria for the order-
blocking filter commonly used in hyperspectral cameras.
In response, we use a pre-calibrated 35mm lens with F5.6
aperture, and we place the camera around 2 meters from the
scene to both increase the depth of field and accomodate
the narrow field of view of the lens. We find that far-IR
wavelengths are slightly out of focus and, although they are
not particularly problematic in this work, techniques from
[8, 13] may be used.

Second, the exposure time of the SOC710-VP in the
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Figure 4. By visually inspecting the same image in several dif-
ferent wavelengths, it becomes obvious that the additional infor-
mation afforded by hyperspectral imagery makes background re-
moval significantly easier than in RGB images.

lightbooth is very long – about 2min20s per image – ne-
cessitating the use of a turntable. In turn, the image back-
grounds do not rotate with the scene so they must be re-
moved from the images. Fortunately, background removal
is straightforward when leveraging hyperspectral data, as il-
lustrated in Figure 4. We set the background color to pure
white: 255 in all wavelength channels.

4.3. Computing Camera Poses and Scene Bounds

To compute the camera intrinsics and extrinsics neces-
sary to train NeRF models, we create pseudo-RGB im-
ages to use in an off-the-shelf Structure-from-motion pack-
age. Although the turntable enforces the angular posi-
tion of the camera in a “ring” around the scene, the dis-
tance, height, and orientation of the camera are unknown.
We use COLMAP, a popular Structure-from-Motion pack-
age, to obtain camera poses and intrinsics. We generate
pseudo-RGB images to feed into COLMAP by taking the 3
wavelength channels from the hyperspectral images which
roughly correspond to red, green, and blue. Although a
more accurate pseudo-RGB image could be generated, we
find the narrower wavelength bands create more distinctive
features and thus more reliable matching. Due in part to the
narrow field of view and low resolution compared to e.g.
smartphone cameras, we need to use an undistorted pinhole
camera model (distortion parameters caused poor optimiza-
tion results), have many high-quality features in the scene
(which we achieve using AprilTags [10]), and apply a strict
matching threshold (inlier ratio ≥ 0.70, # inliers ≥ 25).

Finally, as a byproduct of the narrow field of view, we
also find it imperative to crop the ray sampler tightly to the
scene to avoid sampling points that are only visible in a few
cameras. Failing to do so results in “cheating” whereby
the NeRF model synthesizes many 2D “screens” in front
of each camera outside the field of view of the other cam-
eras instead of a single consistent 3D object. To determine
suitable ray sampling bounds, we canonicalize the cam-
era poses according to Figure 5 and compute the “scene”
bounding box, which describes the ray sampler’s bounds,
by projecting the cameras’ fields of view onto the xz and

Scene Bounds

Camera FOV

Figure 5. To tightly bound the scene to the objects of interest, we
canonicalize the camera poses as shown and compute a bounding
box centered at the origin whose size is determined by the cam-
era’s field of view.

yz planes.

4.4. Dataset Scenes

We collect a dataset of 4 scenes, with 2 of the
scenes exhibiting intricate plant geometry (“Rosemary” and
“Basil”) and the other two exhibiting several objects with
wavelength-dependent transparency and radiance/reflection
(“Tools” and “Origami”). Given the hyperspectral camera’s
strength in measuring wavelength and comparative weak-
ness at capturing spatial resolution, we expect the latter two
scenes to be more challenging.

5. Experiments and Discussion
We train Hyper-NeRFs on the 4 scenes from our dataset

and compare the results aoeu...

5.1. Evaluation Metrics

Validation Set. To form our validation set, we can sample
from either images or wavelengths. Sampling from images
is performed the standard way as in the NeRF literature: of
the 48 images per image set, 5 are left out of the training set
and used as ground truth against NeRF predictions. Sam-
pling wavelengths is performed similarly: of the N wave-
lengths, we reserve 0.10·N for ground truth against NeRF’s
predictions of those wavelengths.

Metrics. As is standard in NeRF literature, we present
PSNR, SSIM, and LPIPS metrics. Note that, for LPIPS,
we use pseudo-RGB images extracted the same way as de-
scribed in 4.3. In addition to quantitative metrics, we also
provide a qualitative comparison of synthesized images.

5.2. RGB

We can first evaluate our hyperspectral approach on RGB
images using stock nerfacto as a baseline. This is possi-
ble since a standard RGB image can be interpreted as an
N = 3-channel hyperspectral image. However, because
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Method
Rosemary Basil Tools Origami

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

nerfacto 20.675 0.892 0.103 17.244 0.790 0.226 11.760 0.338 0.492 12.400 0.361 0.768
Ours-Cont 18.530 0.861 0.086 16.288 0.742 0.227 12.168 0.385 0.533 10.741 0.289 0.562
Ours-RGB 18.601 0.865 0.083 16.780 0.765 0.212 11.456 0.321 0.501 10.870 0.301 0.520
Hyper-NeRF (ours) 17.702 0.870 0.094 16.493 0.798 0.288 7.192 0.331 0.733 10.359 0.453 0.693

Table 1. Because our approach can handle arbitrary numbers of wavelengths, we can apply it to the RGB case (N=3 wavelengths) to
compare with a baseline NeRF implementation (nerfacto). We observe that both our discrete and continuous approaches are comparable
to the baseline for the easier Rosemary and Basil scenes, and outperform the baseline for the more challenging Tools and Origami scenes.
“Ours-Cont” refers to the exact same implementation as Hyper-NeRF except we only train with 3 wavelengths. “Ours-RGB” refers to a
slightly modified version of row 2 in the ablations (see Table 3) to output 3 discrete radiance and 3 discrete density channels. “Ours-Hyper”
refers to our Hyper-NeRF implementation trained on a full, 128-channel hyperspectral image. Since our metrics are normalized to the
number of wavelengths, we provide it as a reference to evidence that the hyperspectral performance on any given channel is comparable to
the performance for RGB channels. We evaluate LPIPS on pseudo-RGB images extracted the same way as described in 5.2.

the wavelengths corresponding to (r, g, b) are very sparse as
compared to hyperspectral images, the assumption that the
color and density spectra are continuous is violated. There-
fore, in addition to our approach using F2b, we also present
results using F1 for both the emission and absorption net-
works.

As expected for the Rosemary and Basil scenes, which
contain only opaque objects, our approach performs no bet-
ter than the baseline. However, in the Tools and Origami
scenes where there is significantly more wavelength depen-
dent absorption and emission effects, we see that our ap-
proach slightly outperforms the baseline.

5.3. Hyper-NeRF Wavelength Generalization

Next, we evaluate our approach on hyperspectral data for
our 4 image sets and withold both entire images and entire
wavelengths from the training sets.

In particular, we seek to demonstrate 2 things: (1) that
NeRF methods generalize well to hyperspectral data and
(2) that we can suitably learn continuous representations for
spectra. To do so, we train the same NeRF architecture 4
separate times: first using the full 128 wavelengths, then
with only 64, 32, and 16 evenly sampled wavelengths. Dur-
ing evaluation, the networks must generalize to both unseen
images and unseen wavelengths.

Table 2 and Figure 6 illustrate that the same network
architecture can incorporate arbitrary wavelength supervi-
sion: increasing or decreasing the number of wavelengths
used during training has a minimal effect on evaluation ac-
curacy. From this we can deduce that continuous represen-
tations of radiance spectra can allow generalizing NeRF to
arbitrary wavelengths.

Furthermore, the ability to interpolate between wave-
lengths reveals possible applications to the hyperspectral
super-resolution task, very similar to [23].

5.4. Ablations

As mentioned in previous sections, there are some al-
ternative options for how to achieve hyperspectral radiance
and density predictions. We may:

1. simply output N -dimensional vectors instead of a
scalar density or 3-channel color,

2. input the wavelength as another spatial dimension sim-
ilar to the way time is handled in time-varying NeRFs
[3, 19],

3. keep a grayscale density, and/or

4. augment the proposal networks (coarse networks) with
the wavelength with the same options, or leave the pro-
posal network as is.

We denote the options for the radiance spectrum as:

(ours) C :(λ ; Θc(x,d)) → cλ

(nerfacto) C0 : (x,d) → c := (r, g, b)

C1 : (x,d) → (cλ1 , . . . , cλN )

C2 : (λ,x,d) → cλ,

where in C2, λ is concatenated with x before the hash en-
coding.

Similarly, we denote the options for the density spectrum
as:

(ours) σ :(λ ; Θc(x)) → cλ

(nerfacto) σ0 : (x) → c := (r, g, b)
σ1 : (x) → (cλ1 , . . . , cλN )
σ2 : (x, λ) → cλ.

Finally, for the proposal network we only consider P0,
which denotes baseline nerfacto network, and Pλ, which de-
notes a proposal network augmented with the wavelength.
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# of Wavelengths Train Set Unseen Images Unseen Wavelengths Both Unseen
in Train Set PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑

128 20.378 0.848 0.255 16.493 0.798 0.288 N/A N/A N/A N/A
64 19.893 0.839 0.246 16.534 0.786 0.277 20.005 0.834 16.651 0.782
32 19.460 0.825 0.264 16.229 0.781 0.296 19.447 0.820 16.258 0.777
16 14.592 0.759 0.272 13.586 0.717 0.306 14.656 0.759 13.641 0.717

Table 2. Having 128 channels for each image allows us to withhold wavelengths from the training set and force the network to interpolate.
The relatively small drop in performance when withholding even the vast majority of the wavelengths supports the claim that continuous
radiance and transmission spectra are well suited for Hyper-NeRF.

# Wavelengths Channel 15 Channel 35 Channel 55 Channel 75 Channel 95
in Train Set (447nm) (550nm) (654nm) (760nm) (868nm)

Ground
Truth

128

64

32

16

Figure 6. We visually observe the ability of Hyper-NeRF to interpolate wavelengths unseen in the training set. None of the wavelengths
from this image were used in training (except 128 channel case), and none of the images used in training used these wavelengths (corre-
sponds to Both Unseen in Table 2). We color the images using the “jet” colormap available in matplotlib and matlab for easier perception.

The ablation results are shown in Table 3 and a repre-
sentative sample shown in Figure 7. All methods are com-
parable, with the exception of the last two rows on the
Tools scene. This is believed to be a byproduct of imper-
fect COLMAP camera pose computation which resulted in
a camera pose offset from the correct pose. Given that the
LPIPS is not negatively affected and the SSIM is affected
less than the PSNR, it is reasonable to expect that an im-
age translation could produce such an error, especially given
these are real datasets and not synthetic.

5.5. Additional Future Applications

The ability to represent a scene with a radiance field that
is continuous not only in position and view direction but
also in wavelength opens up a variety of applications which
we very briefly demonstrate here.

Simulating Imaging Sensors. Typical imaging sensors in
cameras (and human eyes as well) are sensitive not to a sin-
gle wavelength, but to a finite band of wavelengths. The
sensitivity vs wavelength plot has a significant impact on
the color accuracy of the photos taken by the camera. Given
a scene which has been captured using Hyper-NeRF, we can
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Table 3. Ablations

Network Basil Tools
Archictecure PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

C1 σ0 P0 16.493 0.819 0.317 15.335 0.588 0.553
C1 σ1 P0 16.358 0.809 0.332 14.375 0.431 0.709
C2 σ2 P0 16.219 0.777 0.303 15.708 0.642 0.568

(ours)C σ P0 16.493 0.798 0.288 7.192 0.331 0.733
C σ Pλ 14.637 0.710 0.283 13.221 0.399 0.663

Network Channel 15 Channel 55 Channel 95
Architecture (447nm) (654nm) (868nm)

Ground
Truth

C1 σ0 P0

C1 σ1 P0

C2 σ2 P0

(ours)
C σ P0

C σ Pλ

Figure 7. Comparing the different network architectures presented,
we see that most methods perform similarly. Note that, unlike
Figure 6, these wavelengths appear in the training sets but these
images do not.

simulate the effect of different imaging sensors from differ-
ent locations by integrating over both the ray and the wave-
length during rendering.

Hyperspectral Super-Resolution. Hyperspectral super-
resolution, in which we seek to (a) turn a multispectral im-
age (with fewer wavelengths than a hyperspectral image)
into a hyperspectral image (with more wavelengths) or (b)
turn a low-resolution hyperspectral image into a higher res-
olution, is an increasingly popular challenge in computer
vision. Zhang et al. has already applied a similar con-

tinuous spectral network representation to 2D hyperspec-
tral super-resolution [23], and leveraging multi-view con-
sistency may further improve the performance of existing
hyperspectral super-resolution approaches, and Section 5.3
has already demonstrated that interpolating wavelengths is
possible with Hyper-NeRF.

Material and Chemical Composition Estimation. As
mentioned in the introduction, hyperspectral cameras have
been used to estimate the compositions of samples such as
plant matter. Hyper-NeRF may enable estimating not only
the composition percentages of various materials within a
sample, but also their spatial distributions.

5.6. Limitations

We believe this work to be just the initial feasibility
demonstration for further study regarding hyperspectral 3D
reconstructions using NeRFs. As such, there are several
limitations in this work ripe for future study. The relatively
low resolution of hyperspectral cameras combined with the
limited number of images taken (due to the long exposure
time) result in a limited total number of rays with which
to supervise NeRF training – incorporating recent develop-
ments from data-efficient [21], low-light [15], and motion-
blurred [13] NeRF research may significantly improve re-
sults. Addressing de-focus [8] and tighter background re-
moval are also important to obtain more accurate subject
geometries.

6. Conclusions and Future Works
In this work, we showed that NeRFs can be naturally

extended to hyperspectral imagery. We collected a dataset,
described the special considerations needed to handle hy-
perspectral data, and presented a novel algorithm for creat-
ing Hyper-NeRFs that generalizes to arbitrary wavelength
inputs.

We also posited on potential future applications of
Hyper-NeRFs, including hyperspectral super-resolution,
imaging sensor simulation, and structural material analysis.
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