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1. Introduction
In this work, we demonstrated that Neural Radiance

Fields (NeRFs) can be naturally extended to hyperspectral
data and are a well-suited tool for hyperspectral 3D recon-
struction. The implementation details provided in this sup-
plemental document describe our simple approach to hyper-
spectral NeRF, but we anticipate future works by the com-
munity will improve upon our baseline implementation us-
ing our to-be-published dataset, future larger datasets, ad-
ditional architecture and hyperparameter tuning, and recent
advances in NeRFs.

Our full code will be made publicly available for the
camera ready version.

2. Implementation Details
We openly admit that significant improvements could be

made on our implementation, re-emphasizing that our pri-
mary contribution is having demonstrated that NeRFs with
continuous wavelength representations can work well on
hyperspectral data.

We build upon nerfstudio’s nerfacto implementation,
from commit ef9e00e. The original nerfacto pipeline and
field are shown in Figs. 1 and 2 respectively.

Figure 1. The original nerfacto pipeline (from nerfstudio docs)
contains a proposal sampler, which is analagous to the “coarse”
field from the original NeRF paper [2], and a “Nerfacto Field”,
which is analagous to the primary network from the original NeRF
paper (FΘ).

Figure 2. The original nerfacto field (from nerfstudio docs) is very
similar to the original NeRF paper [2], but includes appearance
embeddings [1] and uses slightly different encodings for the posi-
tion and direction. This figure is reproduced in Fig. 2 of our main
paper.

As briefly summarized in the main paper, we make min-
imal modifications to the pipeline and field. Using the no-
tation from Section 5.4: Ablations, C0 is the stock nerfacto
field; C1 only changes the rightmost MLP in Fig. 2 to out-
put 128 channels in the last layer instead of 3; C2 changes
the positional hash encoding (φ in Fig. 2) to take 4 inputs
instead of 3 (appending λ) and changes the rightmost MLP
to only have 1 output for cλ instead of (r, g, b); and C is
shown in Fig. 2 (bottom) of the main paper. For C, the
sinusoidal encoding for λ is taken to have 8 terms (tested
2, 4, 8, 16 terms, with 8 performing marginally better than
4 and 16, and 2 significantly worse). Also for C, the com-
ponent C(λ; ΘC) MLP from Fig. 2 of the main paper was
taken to be identical to the rightmost MLP in Fig. 2 except
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with the appropriate additional number of inputs to accom-
modate concatenating the sinusoidally encoded wavelength,
and with only 1 output for cλ instead of 3 for (r, g, b). The
latent vector ΘC was taken to be the same size as in the
nerfacto implementation (15-dim), with increasing the size
to 32 and 64 showing negligible performance improvement
but increased training instability.

Similarly, σ0 is the stock nerfacto field; σ1 only changes
the left MLP in Fig. 2 to have 128 outputs; σ2 changes
the positional hash encoding to take 4 inputs, and σ is as
shown in Fig. 2 (bottom) of the main paper. The additional
component σ(λ; ΘC) MLP has 3 layers with 64-dim hidden
layers and ReLU activations. The sinusoidally encoded λ
is shared with C and the latent Θσ vector is shared with
(identical to) the ΘC vector.

Finally, P0 is the stock nerfacto proposal network while
Pλ augments the proposal network with the wavelength.
For Pλ, the position is first run through a hash encoding
and MLP as in P0, except the MLP outputs a latent vec-
tor of dimension 7 instead of a scalar density. This latent
vector is concatenated with a 2-term sinusoidally encoded
wavelength and fed through a 2-layer network with 7-dim
hidden layer to output a scalar density for inverse transform
ray sampling. Like the original nerfacto pipeline, this sam-
pling step occurs twice with identical architecture (but dif-
ferent weights) proposal networks.

Reiterating our implementation, our primary Hyper-
NeRF implementation uses C(λ; ΘC), σ(λ; Θσ), and P0,
which we find to produce good results while also enabling
wavelength interpolation.

2.1. RGB Implementations

Erratum. First, we apologize for the following error in
the main paper that we will correct for the camera-ready
version: For the caption in Table 1, we mistakenly state
that our method outperforms the baseline for the more chal-
lenging Tools and Origami scenes. We intended to portray
that our approaches achieve very comparable performance
to standard RGB nerfacto on all scenes, despite the fact that,
for Ours-Cont and Ours-RGB, the wavelength bands are
very far apart which should make learning more difficult.
For Ours-Hyper, we achieve comparable performance on
all scenes except Tools despite the fact that we are learning
128 channels instead of just 3 while the number of learnable
parameters is virtually identical to nerfacto and completely
identical to Ours-Cont.

Pseudo-RGB wavelengths. For the purposes of generat-
ing pseudo-RGB images, we use the wavelengths 622nm,
555nm, and 503nm for R, G, and B channels respectively.
Generating more accurate pseudo-RGB images by integrat-
ing over the spectrum according to an image sensor sensi-
tivity curve (as described in Section 5.5 of the main paper)

would also be possible, but is unnecessary to demonstrate
our results.

Hyper-NeRF RGB variation implementations. For the
purposes of making a quantitative comparison to standard
RGB NeRF, Section 5.2 and Table 1 of the main paper
present variations of our approach applied to just 3-channel
(RGB) images instead of the full 128-channel hyperspectral
data. As described in the caption of Table 1, “Ours-Cont”
refers to our Hyper-NeRF implementation but trained on
only 3 wavelengths, “Ours-RGB” refers to C1, σ1, P0 with
3 output channels for both C1 and σ1, and “Ours-Hyper”
refers to our Hyper-NeRF implementation trained on all 128
wavelengths. In the table for Ours-Hyper, PSNR and SSIM
are evaluated over all 128 wavelengths while LPIPS is eval-
uated only for the 3 channels closest to the red, green, and
blue wavelengths according to our Pseudo-RGB procedure.

3. Training Details
All networks were trained for 25000 steps, with 4096

train rays per batch using the Adam optimizer. The pro-
posal networks and field both used lr=1e-2, eps=1e-15, and
weight decay=1e-6. Camera extrinsic and intrinsic opti-
mization were both turned off, since evaluation metrics are
skewed if camera parameters are modified. To accommo-
date imperfect camera poses, after COLMAP, stock ner-
facto was run on Pseudo-RGB images for 100000 steps with
camera optimization turned on and the resulting camera
pose corrections were saved and used in subsequent tests.

Of the 48 images per image set, 43 were used for training
and 5 withheld for evaluation. Each step, the 4096 training
rays were sampled randomly from all 43 training images,
except for row 5 of the ablations where the training rays
were sampled from only 10 of the 43 training images each
step, with the choice of 10 images being re-sampled every
250 steps.

In some approaches, not all wavelengths could be run for
every batch due to VRAM limits so a subset of wavelengths
were sampled (randomly) for each batch, but every sampled
wavelength was run for every ray in the batch. For rows 1
and 2 of the ablations, every wavelength could be run ev-
ery batch. For rows 3, 4 (Hyper-NeRF, ours), and 5, the
number of wavelengths sampled per step were 8, 12, and 6,
respectively.

For evaluation, every wavelength of every pixel of the
5 evaluation images were evaluated and compared for each
scene.

All tests were performed on an NVidia GeForce GTX
3090, and most training runs took between 20min-60min.

3.1. Commentary on the Tools Scene

The Tools scene experienced instabilities during training
with several approaches including both Hyper-NeRF (ours)

2
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Loss Curves for Pseudo-RGB NeRF

Figure 3. Loss curves for RGB NeRF correspond to the metrics from Table 1 in the main paper. Most scenes have converged by 25000
steps except the Tools scene which appears to have difficulty converging for all methods except “Ours-Cont”, which is reflected in Table 1
of the main paper.
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Figure 4. Loss curves for Hyper-NeRF trained
with a subset of wavelengths (analagous to Table
2 in the main paper) shows that even training with
only 1 out of every 8 wavelengths still has almost
identical convergence rate w.r.t. number of steps.

0 10000 20000
Steps

10−3

10−2

10−1

100

Tr
ai

n
L

os
s

Rosemary Scene

CCC1 σ0 P0

CCC1 σ1 P0

CCC2 σ2 P0

CCC σ P0 (ours)
CCC σ Pλ

0 10000 20000
Steps

Tr
ai

n
L

os
s

Basil Scene

CCC1 σ0 P0

CCC1 σ1 P0

CCC2 σ2 P0

CCC σ P0 (ours)
CCC σ Pλ

0 10000 20000
Steps

Tr
ai

n
L

os
s

Tools Scene

CCC1 σ0 P0

CCC1 σ1 P0

CCC2 σ2 P0

CCC σ P0 (ours)
CCC σ Pλ

Loss Curves for Different Network Architectures (Ablations)

Figure 5. Loss curves for ablation testing (analagous to Table 3 in the main paper)
shows that while the rosemary and basil scenes optimize well, the tools scene
does not converge particularly well for any method, re-emphasizing the suspected
pre-processing (COLMAP) inaccuracy.

and nerfacto (RGB baseline). We anticipate that obtaining
better camera intrinsics and extrinsics will correct this issue,
since (a) every method had difficulty on this scene and (b)
enabling camera pose optimization during NeRF training
improved convergence for all methods. We plan to obtain
better camera intrinsics by initializing COLMAP with the
intrinsics obtained from other scenes, and we plan to ob-
tain better camera extrinsics through a combination of tun-
ing COLMAP parameters, utilizing turntable priors, and a
longer NeRF-based camera pose refinement as described in
3. The poor convergence on the Tools scene for all methods
is illustrated in both Fig. 3 (green curves) and Fig. 5.

3.2. Loss Curves

To demonstrate that all methods were fairly trained un-
til convergence, the loss curves corresponding to the met-
rics given in the main paper are shown. As mentioned,
the Tools scene appears to have difficulty converging for
all methods including baseline nerfacto, suggesting possi-
ble pre-processing (COLMAP) inaccuracy. This is evident
both in the green curves of Fig. 3 and in the rightmost plot
of Fig. 5.

Exemplified by Fig. 5 (left, orange), one interesting ob-
servation we found is that the C1 and σ1 architectures occa-
sionally exhibit convergence followed by a second descent
and convergence. Inspecting the evaluation images, we ob-

serve the first convergence to be learning a scalar density
field and the second convergence to be learning the color
spectrum.

4. Qualitative Example Results

A selection of example images and videos are provided
in both this pdf and in the enclosing zip folder to better
gauge our results qualitatively. However, we emphasize
again that our primary contribution is demonstrating that
applying NeRF to hyperspectral data is a promising avenue
for study. Therefore, we give 2 caveats: (1) visualizing
pseudo-RGB results should not be compared to standard
RGB NeRF results from other papers due to the many chal-
lenges associated with hyperspectral cameras as described
in Section 4.2 of the main paper, and (2) results should be
interpreted as a starting point for future works to iterate
upon rather than a comprehensive approach.

In Figs. 6 and 7, we can observe that Hyper-NeRF visu-
ally appears “sharper” than all other approaches – the April-
Tags clearly have much more detail in ours and the veins of
the leaves also appear better resolved in Ours-RGB, Ours-
Cont, and Ours-Hyper than the other approaches. These
two figures depict pseudo-RGB representations of the hy-
perspectral images rendered by our NeRFs in subfigures
(e)-(l). Meanwhile, (b)-(d) depict the RGB renderings of 3-

3
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channel, RGB NeRFs. Figs. 6 and 7 also evidence that Ab-
lation 5 (wavelength-dependent sample proposal network)
is never able to learn colors despite having already con-
verged (Fig. 5). Finally, Figs. 6 and 7 also evidence that the
hyperspectral approaches do not always have perfect color
accuracy, tinting the AprilTags slightly green, which sug-
gests that increasing the size of the color network or latent
vector may produce better results.

Note that Figs. 6 and 7 are on the next page.

4
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(a) Ground Truth

(b) nerfacto baseline (c) Ours-RGB (d) Ours-Cont (e) Ours-Hyper
(Hyper-NeRF)

(128 wavelengths)
(Ablation 4: C σ P0)

(f) trained on 64/128
wavelengths

(g) trained on 32/128
wavelengths

(h) trained on 16/128
wavelengths

(i) Ablation 1: C1 σ0 P0 (j) Ablation 2: C1 σ1 P0 (k) Ablation 3: C2 σ2 P0 (l) Ablation 5: C σ Pλ

Figure 6. Pseudo-RGB images of an evaluation image from the Basil scene for different methods demonstrates that our approach (e) is
able to capture more detail in the leaves and AprilTags than all other approaches including the nerfacto baseline. (b)-(e) represent the 4
approaches from Table 1 of the main paper and Fig. 3. (e)-(h) represent the 4 approaches from Table 2 of the main paper and Fig. 4. (e)
and (i)-(l) represent the 5 ablations from Table 3 of the main paper and Fig. 5. While the NeRF representations for (b)-(d) contain only
RGB, all other subfigures are pseudo-RGB representations of the hyperspectral NeRFs.
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(a) Ground Truth

(b) nerfacto baseline (c) Ours-RGB (d) Ours-Cont (e) Ours-Hyper
(Hyper-NeRF)

(128 wavelengths)
(Ablation 4: C σ P0)

(i) Ablation 1: C1 σ0 P0 (j) Ablation 2: C1 σ1 P0 (k) Ablation 3: C2 σ2 P0 (l) Ablation 5: C σ Pλ

Figure 7. Same as Fig. 6 but for the Rosemary scene. Again, our approach appears to generate sharper results in the leaves and AprilTags
than all other approaches including the nerfacto baseline. Contrary to the Basil scene, however, Ours-RGB and Ours-Cont also appear to
generate results that have comparable sharpness to Hyper-NeRF.
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