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Abstract. Hyperspectral Imagery (HSI) has been used in many ap-
plications to non-destructively determine the material and/or chemical
compositions of samples. There is growing interest in creating 3D hyper-
spectral reconstructions, which could provide both spatial and spectral
information while also mitigating common HSI challenges such as non-
Lambertian surfaces and translucent objects. However, traditional 3D
reconstruction with HSI is difficult due to technological limitations of
hyperspectral cameras. In recent years, Neural Radiance Fields (NeRFs)
have seen widespread success in creating high quality volumetric 3D rep-
resentations of scenes captured by a variety of camera models. Leverag-
ing recent advances in NeRFs, we propose computing a hyperspectral 3D
reconstruction in which every point in space and view direction is charac-
terized by wavelength-dependent radiance and transmittance spectra. To
evaluate our approach, a dataset containing nearly 2000 hyperspectral
images across 8 scenes and 2 cameras was collected. We perform com-
parisons against traditional RGB NeRF baselines and apply ablation
testing with alternative spectra representations. Finally, we demonstrate
the potential of hyperspectral NeRFs for hyperspectral super-resolution
and imaging sensor simulation. We show that our hyperspectral NeRF
approach enables creating fast, accurate volumetric 3D hyperspectral
scenes and enables several new applications and areas for future study.

Keywords: Neural Radiance Fields · Hyperspectral Imagery · Hyper-
spectral Super-Resolution · 3D Computer Vision

1 Introduction

Hyperspectral imagery is a useful tool in many applications for non-destructively
characterizing material and chemical compositions. For example, HSI is used in
agriculture to assess plant health and nutrient content, in medicine to diag-
nose diseases, and in drilling to view otherwise invisible gasses like methane.
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In contrast to typical RGB images which have 3 color channels for each pixel,
hyperspectral images consist of tens to hundreds of color channels (wavelengths)
for each pixel and typically have minimal spectral overlap among channels. Be-
cause different materials and molecules have different reflectance, transmittance,
and/or fluorescence properties at different wavelengths, hyperspectral data may
be used to infer the composition of a sample. However, studying the spatial data
in HSI is currently under-studied for a number of reasons, with many works only
using the “image” part of HSI to select individual point or aggregated foreground
pixel statistics.

Fig. 1: Instead of 3 color channels for each pixel, hyperspectral images have many
color channels per pixel to measure the color spectrum for every pixel. In this work,
we leverage recent advances in Neural Radiance Fields to create hyperspectral 3D
scene representations. Left: an example hyperspectral image and spectrums at 2 points.
Right: a hyperspectral NeRF and spectra.

We believe NeRF-based 3D reconstructions address many challenges unique
to hyperspectral data. Illumination angle dependence and low signal-to-noise ra-
tio (SNR) can both be mitigated by fusing information from many images from
different viewpoints. The volumetric radiance field representation also provides
a continuous spatial interpolation, in contrast to the sparse point-cloud repre-
sentations in traditional SfM or multi-view stereo approaches. In our approach,
we also show how we can use wavelength as a continuous input to the NeRF al-
lowing interpolation of not only position and view angle, but also of wavelength
to enable hyperspectral super-resolution. Finally, we believe NeRF-based ap-
proaches may be able to handle non-Lambertian surfaces, partial transparency,
and wavelength-dependent transparency better than SfM approaches.

Our contributions are as follows:

– Collect and share a dataset of hyperspectral images suitable for hyperspec-
tral 3D reconstruction,

– Identify special considerations needed to accommodate hyperspectral cam-
era limitations when computing NeRFs,

– Introduce our HS-NeRF model for HyperSpectral 3D reconstruction, with
evaluations and ablations,

– Demonstrate the feasibility of creating hyperspectral 3D reconstructions
using NeRFs, and

– Demonstrate potential applications of hyperspectral NeRFs.
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2 Related Works

Hyperspectral Imagery. We defer to the many high-quality review papers
on detailed background and applications of HSI such as [7]. However, we briefly
motivate the need for hyperspectral 3D reconstruction and discuss some practical
considerations of hyperspectral cameras.

Challenges that have been identified in hyperspectral literature include the
black-box nature of correlating spectra with sample properties [7], the low sig-
nal to noise ratio [13], and the high cost and inconvenience of high-resolution
hyperspectral imaging. We believe that fusing multiple hyperspectral images
into a 3D model can help scientists develop more mechanistic understandings
of hyperspectral data and improve the signal to noise ratio. Further, we believe
many recent advances surrounding NeRFs, such as NeRF in the Dark [16] and
Deblur-NeRF [14], may help extract more information with cheaper HSI sensors.

3D reconstruction is particularly difficult due to a few undesirable properties
of HSI cameras. First, there is a tradeoff between spatial, spectral, and temporal
(exposure time) resolution such that obtaining a low-noise, high-resolution im-
age with many wavelength bands will necessarily require a long (typically on the
order of minutes) exposure time. Second, lenses for hyperspectral cameras are
limited in power due to the wavelength-dependent index of refraction of glass
(even IR-corrected glass is not perfect), which creates more exaggerated chro-
matic aberration and increases the cost of optics. Many hyperspectral cameras
have extremely narrow fields of view as a result, while still suffering from in-
consistent focus across wavelengths and narrow depths of field. Finally, aperture
size is typically bounded due to interactions with order-blocking filters which
correct diffraction side-effects, further limiting the ability to capture clear im-
ages in varying environments. We discuss how we address these challenges for
our dataset and approach.

Hyperspectral 3D Reconstruction. Creating hyperspectral 3D reconstruc-
tions from hyperspectral images has been attempted in the past with point cloud-
based methods. [25] creates separate point clouds for each wavelength channel
then merges them to create a hyperspectral point cloud while [13] directly per-
forms Structure-from-Motion on the hyperspectral data. Extending this, [15] de-
signs custom hyperspectral keypoint feature descriptors for hyperspectral images
to aid in 3D reconstruction, while several other works also address hyperspec-
tral features for image classification [12]. However, Structure-from-Motion ap-
proaches often generate only sparse point clouds and hyperspectral imagery may
often be too noisy and low resolution to obtain good multi-view stereo results.
Further, point clouds typically do not provide sufficient occupancy information
to accurately compensate for shadows and lighting variations. [21] takes a dif-
ferent approach and designs a hyperspectral structured light project device to
measure 3D hyperspectral information. Somewhat similarly, [10] projects hyper-
spectral images onto existing 3D geometry models. However, these are not as
flexible or scalable as a camera-only solution.
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Neural Radiance Fields. Neural Radiance Fields (NeRFs) have exploded [4] in
popularity since the original paper by Mildenhall et al. was published [16]. NeRFs
present a deep-learning approach to obtaining a high quality 3D representation
of a scene by learning a function mapping the location of a point in space and the
direction from which it is being viewed to color radiance and volume density. To
determine the color a pixel of an image should take, a rendering step queries the
function along the pixel’s corresponding image ray and composites the colors
according to classical volume rendering [16]. A large body of works has since
extended and improved upon the initial NeRF paper.

Although no works to our knowledge directly tackle the hyperspectral 3D
reconstruction problem using NeRFs, we directly leverage several advancements
such as the substantial efficiency improvements from Instant-NGP [17] and the
open-source nerfstudio package and nerfacto implementation [19] which we build
our implementation upon. We also draw inspiration from many related works. For
example, several spatio-temporal [5, 20], deformable, and other NeRF works [6]
append a scalar time variable to the 3D location input similar to an approach
we compare against concatenating wavelength to location. Similarly, Zhi et al.’s
semantic NeRF work using implicit scene representations for semantic super-
resolution [24] inspires our continuous wavelength representation for hyperspec-
tral super-resolution.

Several works could also complement our work well and we hope future
research can incorporate their techniques for HS-NeRF. For example, RawN-
eRF [16] and NAN [18] both leverage NeRF’s information fusing ability for low-
light denoising which could help reduce the exposure time required. RawNeRF
applies post-processing on the NeRF instead of the input photos, which could
be applied to mitigate artifacts of hyperspectral cameras such as order-blocking
filter interference. AR-NeRF [9] and Deblur-NeRF [14], which address depth of
field/defocus and motion blur, respectively, could also be useful given the long
exposure times and aperture limitations of hyperspectral cameras.

Hyperspectral Super-Resolution. Evidenced by numerous papers, datasets
[1], and competitions [2], the hyperspectral super-resolution task has become
increasingly popular. Hyperspectral super-resolution may refer to obtaining more
wavelength resolution (i.e. use an RGB or multi-spectral image to predict a
hyperspectral image), obtaining more spatial resolution (i.e. use a low-resolution
hyperspectral image to predict a higher resolution one), or more commonly fusing
together information from complementary sensors [1,8]. Perhaps the most similar
to this work is [22] which uses an implicit neural representation to predict a
higher resolution image using a continuous function mapping pixel coordinate
to color. We extend their work to 3D and put it in the context of NeRFs.

We are also proud to publish our dataset of almost 2000 hyperspectral images;
one plausible reason for the relatively greater popularity of hyperspectral super-
resolution over hyperspectral 3D reconstruction is the lack of publicly available
datasets for the latter.
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In summary, we believe our work is highly complementary to existing works
and supports a promising new direction in 3D hyperspectral reasoning research.

3 HS-NeRF
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Fig. 2: To handle hyperspectral data, we include a wavelength input to our network
which predicts a scalar color intensity and a scalar transmittance. The network pro-
duces spectra for the color intensity and transmittance via the latent vectors ⇥C and
⇥�, respectively, and networks C(�;⇥C) and �(�;⇥�) compute the value of the spec-
tra at the queried wavelength.

Building on the “nerfacto” [19] NeRF implementation, we discuss 3 mod-
ifications for HS-NeRF to accomodate hyperspectral data: (1) color radiance
prediction, (2) transmittance spectrum prediction, and (3) proposal network
modification.

As compared to a (H,W, 3) RGB image, a hyperspectral image can be rep-
resented by a (H,W,N) tensor, where H and W are the height and width of the
image, and N is the number of channels/wavelengths.

Instead of directly predicting an N -dimensional color radiance, we choose to
represent color radiance and transmittance both as continuous spectra: functions
of wavelength. We do so by predicting latent vectors which represent parameters
of learned spectral plots which can then be evaluated for a given wavelength as
shown in Fig. 2.

In this section, we describe the math formulations and some implementation
details, though we also discuss and compare alternatives in Section 5.3. For
additional details, please refer to the supplemental materials.

3.1 Color Radiance Spectrum Prediction

We predict the continuous radiance spectrum by first predicting a latent vector
⇥C representing the parameters of a learned spectral plot. We then obtain the
radiance c

� for a given wavelength � by passing the latent vector together with
the a sinusoidal positionally encoded wavelength � through a decoder C. For-
mally, whereas the nerfacto (baseline) network outputs the color intensity on a
ray as:

C0 : (x,d) ! c := (r, g, b) (1)
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where x := (x, y, z) and d := (✓,�) are the location and view direction of the
ray, respectively, we predict the color radiance spectrum as:

C : (�;⇥C(x,d)) ! c
� (2)

where ⇥c(x,d) is a network that maps the ray’s location and view direction to
a latent vector ⇥c.

3.2 Color Transmittance Spectrum Prediction

Similarly, the transmittance spectrum describes a wavelength-dependent volume
density. In other words, instead of using a scalar density field to describe the
transparency of the scene, we investigate the possibility of using a wavelength-
dependent density field.

Although wavelength-dependent transmittance can also be applied to RGB
scenes and isn’t strictly necessary for hyperspectral scenes, it is generally more
interesting for hyperspectral imagery due to the fact that many materials are
transparent in visible wavelengths but opaque in IR or vice-versa.

In the original and nerfacto NeRF implementations, the volume density is
given by a scalar function �(x). Instead, we choose to model the volume density
in much the same way as for color radiance: a network ⇥�(x) predicts a latent
vector ⇥� which is passed with the wavelength to another network

� : (�;⇥�(x)) ! �
� (3)

where �
� denotes the density at wavelength �.

3.3 Wavelength-dependent Proposal Network

Finally, when choosing a wavelength-dependent volume density, it may also be
natural to make the sample proposal network (analagous to the “coarse” network)
wavelength-dependent. Including such a dependence may be especially useful in
larger scenes with many partially transparent objects (such as plastic films).
However, in ablations with our dataset, we found that doing so did not improve
performance and caused more training instability. Furthermore, as we/nerfacto
use the proposal loss from Mip-NERF 360 [3] which encourages the coarse loss
to be an upper bound of the fine-level density network, the proposal network is
penalized when it under-estimates any wavelength’s density.

4 Dataset and Preprocessing

Before being able to train NeRF models on hyperspectral images, we first collect
images using a hyperspectral camera and turntable, apply preprocessing, and
obtain camera poses and intrinsics by running COLMAP on pseudo-RGB images.
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4.1 Data Collection Setups

To demonstrate the generalizeability of our approach, we compose our dataset of
scenes using two different hyperspectral cameras. The imaging setups are shown
in Figs 3 and 4, respectively, and full details on the cameras and data collection
procedure are available in the supplemental materials.

Fig. 3: The Surface Optics SOC710-
VP camera is mounted on a tripod
and the sample of interest is placed
on a turnable in a Macbeth Spectra-
Light lightbooth with a light gray back-
ground. The camera is roughly 2 meters
away from the scene due to its shallow
depth of field and narrow field of view.

Fig. 4: The BaySpec GoldenEye cam-
era is held with a laboratory clamp
and the sample of interest (here, an
Anacampseros plastic plant) is placed
on a turnable under tungsten halogen
lighting. The camera is roughly 20 cen-
timeters away from the scene thanks to
its wide field of view.

Fig. 5: By visually inspecting the same image of the basil plant in several different
wavelengths, it becomes obvious that the additional information afforded by HSI makes
background removal significantly easier than in RGB images.
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4.2 Image Acquisition and Preprocessing

As mentioned in Section 2, hyperspectral cameras have inherent non-idealities
that must be accounted for when collecting data. We focus our discussion on the
two following hyperspectral cameras:

(a) The Surface Optics SOC710-VP has a high spatial (696⇥520 pixels) and
spectral resolution (N = 128) at the expense of poor temporal resolution (long
exposure time) and extends from 370nm to 1100nm causing some wavelength-
dependent refractive index effects (blurry and misaligned in far-IR).

(b) The BaySpec GoldenEye camera also has a high spatial (640⇥512 pixels)
and spectral (N = 140) resolution over the range 400 – 1100nm. Unlike the other
camera, this one is of the "snapshot" type, meaning that an hypercube can be
captured almost instantly, in around 3 seconds, but at the expense of significant
grain and noise.

First, for both cameras, interactions with glass lenses and diffraction gratings
necessitate careful choice of aperture size and lens. In short, the wavelength-
dependent refractive index of glass (even for IR-corrected lenses) necessitates a
small aperture to keep all wavelengths in focus while diffraction effects necessi-
tate a large aperture to satisfy the criteria for the order-blocking filter commonly
used in hyperspectral cameras. In response, the Surface Optics camera uses a
pre-calibrated 35mm lens with F5.6 aperture, and we place it around 2 meters
from the scene to both increase the depth of field and accommodate the nar-
row field of view of the lens. We find that far-IR wavelengths are slightly out
of focus (e.g . Fig 5) and, although they are not particularly problematic in this
work, techniques from [9, 14] may be used. The BaySpec camera, on the other
hand, has a pre-calibrated 8mm lens of 40° field of view that we use with a F16
aperture and place at just 20 centimeters from the scene.

Second, the image backgrounds do not rotate with the scene so they must be
removed from the images. Fortunately, background removal is straightforward
when leveraging hyperspectral data, as illustrated in Figure 5 where water in the
paint is highly reflective in IR compared to the painted background. We set the
background color to pure white: 255 (Surface Optics) or pure black: 0 (BaySpec)
in all wavelength channels.

4.3 Computing Camera Poses and Scene Bounds

To compute the camera intrinsics and extrinsics necessary to train NeRF models,
we create grayscale images to use in COLMAP: an off-the-shelf Structure-from-
motion package. We generate the gray-scale images by selecting the channel
with the greatest foreground intensity variance. Due in part to the narrow field
of view (Surface Optics), low resolution, chromatic aberration (Surface Optics),
and grainy noise (BaySpec) compared to e.g . smartphone cameras, we need to
use an undistorted pinhole camera model (distortion parameters caused poor
optimization results), have many high-quality features in the scene (which we
achieve using AprilTags [11]), and apply a strict matching threshold (inlier ratio
� 0.70, # inliers � 25).
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Finally, as a byproduct of the narrow field of view of the Surface Optics
camera, we also find it imperative to crop the ray sampler tightly to the scene
to avoid sampling points that are only visible in a few cameras. Failing to do
so results in “cheating” whereby the NeRF model synthesizes many 2D “screens”
in front of each camera outside the field of view of the other cameras instead
of a single consistent 3D object. To determine suitable ray sampling bounds,
we canonicalize the camera poses and compute the “scene” bounding box, which
describes the ray sampler’s bounds, by projecting the cameras’ fields of view
onto the xz and yz planes (see Figure in Supplemental).

4.4 Dataset Scenes

We collect the following datasets, depending on the camera:
(a) With the Surface Optics camera, we collect a dataset of 4 scenes of 48

images each, with 2 of the scenes exhibiting intricate plant geometry (“Rose-
mary” and “Basil”) and the other two exhibiting several objects with wavelength-
dependent transparency and radiance/reflection (“Tools” and “Origami”). Given
the hyperspectral camera’s strength in measuring wavelength and comparative
weakness at capturing spatial resolution, we expect the latter two scenes to be
more challenging.

(b) With the BaySpec camera, we collect a dataset of 4 scenes of 433 images
each, all exhibiting intricate plant geometry (“Anacampseros” and “Caladium”
made of plastic, a “Pinecone”, and a "Buttercrunch Lettuce").

5 Experiments and Discussion

We train HS-NeRFs on the 8 scenes from our dataset and compare the results
both quantitatively and qualitatively (see supplemental). We evaluate the recon-
struction accuracy of the network compared to a nerfacto baseline and run an
ablation. We also present sample applications of hyperspectral super-resolution
and camera sensor simulation.

5.1 Evaluation Metrics

Validation Set. The validation set is formed the standard way as in the NeRF
literature: 90% of the images in the dataset are used to train and the other 10%
used for validation by comparing the actual image with the NeRF prediction at
the given camera pose.

Metrics. As is standard in NeRF literature, we present the Peak Signal to Noise
Ratio (PSNR), the Structural Similarity Index Measure (SSIM), and the Learned
Perceptual Image Patch Similarity (LPIPS) metrics. Note that, for LPIPS, we
use pseudo-RGB images extracted as described in 6.2: as the integral of the prod-
uct between RGB spectral sensitivity curves and the pixel’s intensity spectrum.
In addition to quantitative metrics, we also provide a qualitative comparison of
synthesized images.
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5.2 RGB

We can first evaluate our hyperspectral approach on RGB images using stock
nerfacto as a baseline. This is possible since a standard RGB image can be
interpreted as an N = 3-channel hyperspectral image, and our approach can
generalize to any number of channels. Instead of using standard RGB datasets,
we test using pseudo-RGB images generated from our dataset as described in
6.2 to maintain the noise, aberration, and other effects present in the original
hyperspectral images.

In addition to training our HS-NeRF network directly with 3 wavelengths
(“Ours-Cont”) and training a stock nerfacto model (“nerfacto”), we also consider
two other comparisons. First, we train a modified version of the network in Row

2 of the ablations to output 3 discrete radiance and 3 discrete density channels
(“Ours-RGB”). Second, we provide the metrics for a HS-NeRF network trained
and evaluated on the full, 128-channel hyperspectral image (“Ours-HS”), which
serves to show that extending from RGB to hyperspectral does not significantly
degrade performance. For Ours-HS, We evaluate LPIPS on pseudo-RGB images
extracted as described in 6.2.

Our hyperspectral approach outperforms the baseline in almost every cat-
egory. This is extremely pronounced for the BaySpec datasets (bottom) which
have significant noise in the ground truth images. As a result, the model trained
on the full hyperspectral data is more robust by virtue of the additional infor-
mation given across different frames and wavelengths - similar to how camera
calibration and 3D computer vision can often achieve sub-pixel accuracy.

Table 1: RGB Results. Our HS-NeRF approach outperforms the NeRF baseline (ner-
facto) on almost every baseline when evaluating on RGB images (N=3 wavelengths).

Surface Optics Datasets

Method Rosemary Basil Tools Origami
PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

nerfacto 18.789 0.868 0.089 16.147 0.714 0.229 11.760 0.338 0.492 10.371 0.220 0.560
Ours-Cont 18.530 0.861 0.086 16.288 0.742 0.227 12.168 0.385 0.533 10.741 0.289 0.562
Ours-RGB 18.601 0.865 0.083 16.780 0.765 0.212 11.456 0.321 0.501 10.870 0.301 0.520
Ours-HS 18.327 0.886 0.083 16.548 0.664 0.172 15.591 0.575 0.489 10.359 0.453 0.693

BaySpec Datasets

Method Anacampseros Caladium Pinecone
PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

nerfacto 14.413 0.626 0.432 14.190 0.555 0.503 14.120 0.323 0.464
Ours-Cont 14.171 0.626 0.437 14.306 0.543 0.507 13.868 0.382 0.414
Ours-RGB 14.321 0.619 0.435 14.249 0.569 0.501 15.412 0.615 0.442
Ours-HS 20.315 0.726 0.297 19.084 0.705 0.530 20.066 0.580 0.885
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5.3 Ablations

Instead of the HS-NeRF network described in Fig. 2, we also compare against
simpler approaches to constructing hyperspectral NeRFs. We investigate the
following simplifications:
1. The transmittance function is not wavelength dependent (scalar).
2. Instead of inputting the wavelength, the network simply outputs 128 chan-

nels (instead of 3 for RGB).
3. The wavelength is instead input as another spatial dimension similar to the

way time is handled in time-varying NeRFs [5, 20].
We also investigate making the proposal networks wavelength-dependent as dis-
cussed in Sec. 3.3.

We denote the options for the radiance spectrum as:

(ours) C : (� ; ⇥c(x,d)) ! c
�

C1 : (x,d) ! (c�1 , . . . , c
�N )

C2 : (�,x,d) ! c
�
,

where in C2, � is concatenated with x before the hash encoding.
Similarly, we denote the options for the density spectrum as:

(ours) � : (� ; ⇥�(x)) ! �
�

�0 : (x) ! �

�1 : (x) ! (��1 , . . . ,�
�N )

�2 : (x,�) ! �
�
.

Finally, for the proposal network we only consider P0, which denotes baseline
nerfacto network, and P�, which denotes a proposal network augmented with the
wavelength.

The ablation results are shown in Table 2 and a representative sample shown
in Figure 6. We first observe that the continuous representations perform consis-
tently well. Meanwhile, the discrete approaches excel at the noisy images from
the BaySpec camera but struggle with the cleaner (but fewer) images from the
Surface Optics scenes. Although not quantitatively represented, C2,�2 is signif-
icantly harder to train, very frequently diverging and taking 3 times as long on
average due to the fact that full passes through the network must be evaluated
for every wavelength. We also observe that the choice of transmittance function
has little effect on the results, with Rows 1-2 matching well and Rows 3-4 match-
ing well. Qualitatively (see supplemental), we can also observe that all methods
except the wavelength-dependent proposal network perform very well. Finally,
we observe that our approach appears to have overall the best performance.

6 Example Applications

The ability to represent a scene with a radiance field that is continuous not
only in position and view direction but also in wavelength opens up a variety of
applications which we very briefly demonstrate here.
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Table 2: Ablations.

Network Rosemary Basil Tools
Archictecure PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

C1 �0 P0 18.703 0.883 0.096 15.820 0.756 0.234 15.335 0.588 0.553
C1 �1 P0 18.432 0.873 0.106 15.882 0.760 0.247 14.375 0.431 0.709

(ours) C �0 P0 18.327 0.886 0.083 16.548 0.664 0.172 15.591 0.575 0.489
C � P0 17.477 0.863 0.090 16.532 0.792 0.237 7.192 0.331 0.733
C2 �2 P0 19.744 0.895 0.076 16.393 0.776 0.207 15.708 0.642 0.568
C � P� 17.494 0.851 0.128 15.265 0.704 0.312 13.221 0.399 0.663

Network Anacampseros Caladium Pinecone
Archictecure PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

C1 �0 P0 20.279 0.734 0.295 19.084 0.705 0.530 20.102 0.729 0.399
C1 �1 P0 20.128 0.729 0.305 19.933 0.678 0.495 19.857 0.726 0.372

(ours) C �0 P0 20.315 0.726 0.297 19.428 0.687 0.523 20.162 0.740 0.409
C � P0 20.095 0.705 0.320 18.942 0.653 0.514 19.596 0.729 0.409
C2 �2 P0 21.259 0.711 0.319 18.989 0.595 0.568 19.732 0.561 0.434
C � P� 15.031 0.667 0.351 15.930 0.626 0.556 15.700 0.485 0.484

Ground
Truth C1�0P0 C1�1P0

(ours)
C�0P0 C�P0 C2�2P0 C�P�

Channel
15

(447nm)

Channel
55

(654nm)

Channel
95

(868nm)

Fig. 6: Comparing hyperspectral images (Caladium dataset, validation image) ren-
dered by different networks, we see that most methods perform similarly with the
exception of the wavelength-dependent proposal network.
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6.1 Hyperspectral Super-Resolution

Hyperspectral super-resolution, in which we seek to (a) turn a multispectral
image (with fewer wavelengths than a hyperspectral image) into a hyperspectral
image (with more wavelengths) or (b) turn a low-resolution hyperspectral image
into a higher resolution image, is an increasingly popular challenge in computer
vision. Zhang et al. has already applied a similar continuous spectral network
representation to 2D hyperspectral super-resolution [23], and leveraging multi-
view consistency may further improve the performance of existing hyperspectral
super-resolution approaches.

Table 3: Having 128 channels for each image allows us to withhold wavelengths from
the training set and force the network to interpolate. The relatively small drop in
performance when withholding even the vast majority of the wavelengths supports the
claim that continuous radiance and transmission spectra are well suited for HS-NeRF.

Basil Dataset
# of Wavelengths Train Set Unseen Images Unseen Wavelengths Both Unseen

in Train Set PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" PSNR" SSIM"

128 20.378 0.848 0.255 16.493 0.798 0.288 N/A N/A N/A N/A
64 19.893 0.839 0.246 16.534 0.786 0.277 20.005 0.834 16.651 0.782
32 19.460 0.825 0.264 16.229 0.781 0.296 19.447 0.820 16.258 0.777
16 14.592 0.759 0.272 13.586 0.717 0.306 14.656 0.759 13.641 0.717

Anacampseros Dataset
# of Wavelengths Train Set Unseen Images Unseen Wavelengths Both Unseen

in Train Set PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" PSNR" SSIM"

128 20.550 0.730 0.294 20.315 0.726 0.297 N/A N/A N/A N/A
64 20.947 0.735 0.461 20.701 0.732 0.459 20.979 0.736 20.732 0.733
32 20.760 0.734 0.469 20.512 0.731 0.468 20.773 0.734 20.527 0.732
16 19.868 0.727 0.477 19.705 0.725 0.474 19.854 0.728 19.690 0.726

We demonstrate hyperspectral super-resolution on our 8 image sets by with-
olding entire images and entire wavelengths from the training sets and evaluat-
ing the hyperspectral image predictions. To characterize the accuracy vs super-
resolution factor, we train the same NeRF architecture 4 separate times: first
using the full 128 wavelengths, then with only 64, 32, and 16 evenly sampled
wavelengths. During evaluation, the networks must generalize to both unseen
images and unseen wavelengths.

Table 3 and Figure 7 illustrate that the same network architecture can incor-
porate arbitrary wavelength supervision: increasing or decreasing the number of
wavelengths used during training has a minimal effect on evaluation accuracy.
From this we can deduce that continuous representations of radiance spectra
can successfully allow generalizing NeRF to arbitrary wavelengths.
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# Wavelengths Channel 15 Channel 35 Channel 55 Channel 75 Channel 95
in Train Set (447nm) (550nm) (654nm) (760nm) (868nm)

Ground
Truth

128

64

32

16

Fig. 7: We visually observe the ability of HS-NeRF to interpolate wavelengths unseen in
the training set. None of the wavelengths from this image were used in training (except
128 channel case), and none of the images used in training used these wavelengths
(corresponds to Both Unseen in Table 3). We color the images using the “jet” colormap
available in matplotlib and matlab for easier perception.
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6.2 Simulating Imaging Sensors

HS-NeRF can also characterize and simulate different image sensors from a single
photo of the imaged scene. Since camera image sensors each have a particular
spectral response, the recorded RGB intensities are given by integrating (over
all wavelengths) the product of the light spectrum reaching the sensor and the
sensor’s response curve. HS-NeRF can compute the light spectrum reaching the
sensor at each pixel which enables both characterization and simulation.

To characterize the image sensor, we first localize the query photo’s camera
pose in the scene using COLMAP. We then render a hyperspectral image from
the HS-NeRF. Finally, we solve for the spectral response by minimizing:

⇥
r̄(�) ḡ(�) b̄(�)

⇤
= argmin

X

X

i,j

(RGBij �X ·HSij)
2 (4)

where X 2 R3⇥128; RGBij 2 R3 and HSij 2 R128 denote the ij
th pixel of

the photo and hyperspectral render, respectively; and r̄, ḡ, b̄ denote 128x1 vector
parametrizations of the image sensor’s spectral response, assuming each pixel has
the same spectral response. To simulate an image sensor, we simply apply the
response: RGBsimulated,ij =

⇥
r̄(�) ḡ(�) b̄(�)

⇤
·HSij . Fig. 8 shows an example

simulated photo alongside the real photo.

Fig. 8: A demonstration of image sensor simulation (here with the Anacampseros).
Left: A photo taken with a smartphone (a crop from Fig. 4). Right: The simulated
photo computed from the HS-NeRF.

7 Conclusions and Future Works

In this work, we showed that NeRFs can be naturally extended to hyperspectral
imagery. We collected a dataset, described the special considerations needed to
handle hyperspectral data, and presented and evaluated a novel algorithm for
creating HS-NeRFs that generalizes to arbitrary wavelength inputs.

We also demonstrated sample applications of hyperspectral NeRFs, includ-
ing hyperspectral super-resolution and imaging sensor simulation. Future works
include improved performance with architectural and process improvements and
application of HS-NeRFs to non-destructively estimate material compositions.
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