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Abstract— Trajectory retiming is the task of computing a fea-
sible time parameterization to traverse a path. It is commonly
used in the decoupled approach to trajectory optimization
whereby a path is first found, then a retiming algorithm
computes a speed profile that satisfies kino-dynamic and other
constraints. While trajectory retiming is most often formulated
with the minimum-time objective (i.e. traverse the path as
fast as possible), it is not always the most desirable objective,
particularly when we seek to balance multiple objectives or
when bang-bang control is unsuitable. In this paper, we present
a novel algorithm based on factor graph variable elimination
that can solve for the global optimum of the retiming problem
with quadratic objectives as well (e.g. minimize control effort
or match a nominal speed by minimizing squared error),
which may extend to arbitrary objectives with iteration. Our
work extends prior works, which find only solutions on the
boundary of the feasible region, while maintaining the same
linear time complexity from a single forward-backward pass.
We experimentally demonstrate that (1) we achieve better real-
world robot performance by using quadratic objectives in place
of the minimum-time objective, and (2) our implementation is
comparable or faster than state-of-the-art retiming algorithms.

I. INTRODUCTION

Trajectory optimization is necessary to execute safe, effec-
tive robot motions and can be solved either directly as a state-
space optimization problem or with a decoupled approach
in which a configuration-space path is first found then
retimed [1, Ch. 11.2]. We focus on the decoupled approach
to separate the trajectory optimization problem into a path
planning problem and a retiming problem. In this approach, a
path planner first generates a path which e.g. avoids obstacles
and solves the robot kinematics. Then, a retiming algorithm
is applied to the path to generate a trajectory which satisfies
the robot’s dynamics and other constraints. Although the
resulting solution is only an approximation to the original
trajectory optimization problem, it is often more tractable,
faster, and reliable, especially when the path planner has
good heuristics for kino-dynamic constraints or the task
specification defines the path.

The time-optimal trajectory retiming problem (also known
as time-optimal path parameterization (TOPP), time-optimal
path tracking, and several other names), in which the objec-
tive is to minimize the time to traverse the path, represents
the most common retiming objective. This problem has
been studied extensively in the literature and traditionally
has taken one of three approaches [2]: convex optimization,
dynamic programming, and searching for bang-bang control
switching points where the active constraints change.
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Fig. 1. Using quadratic objectives (green) in place of the minimum-time
objective (red) results in less aggressive maneuvers and a more consistent
speed profile. Our approach may increase safety margins, improve tracking
accuracy, and reduce premature wear by balancing objectives like execution
speed and motor torques.
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Fig. 2. Open-loop cable robot tensions for the TOPP trajectory frequently
hit control limits, losing stiffness and stability. Meanwhile, quadratic objec-
tives (QOPP) enable a tunable tradeoff between duration and safety margin.

Two key precursor techniques enabling efficient algorithms
are shared by almost all approaches, dating back to at least
[3]–[7]. First, the equations of motions and constraints are
reparameterized in terms of the scalar time parameterization
function (see Sec. II-A for details). This enables Bellman-
style forward-backward algorithms. Second, the fact that the
time-optimal objective is monotonic implies that the solution
must lie on the boundary of the feasible set (bang-bang).
Hauser [8], Nagy & Vajk [2], and Pham et. al. [2] all utilize
proofs along these lines to justify the use of sequential linear
programming (SLP) or greedy speed maximization during
the backward pass. This bang-bang approach is efficient but
restricts the objective to minimum-time or similar objectives.

However, the time-optimal retiming problem is not always
the most desirable objective [9], particularly in applications
where we seek to balance multiple objectives or where
bang-bang control is unsuitable. For example, cable-driven
parallel robots maintain stiffness primarily through internal
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tension which diminishes the closer they are to torque limits.
Thus balancing speed with torque margin is desirable to
maintain stability and safety [10], [11]. This and several
other applications in balancing robot safety, stability, and
wear with speed of operation motivate the use of quadratic
objectives, which can minimize the sum of multiple squared
errors instead of or in addition to hard constraints with TOPP.

Surprisingly alternate retiming objectives are rarely con-
sidered in the literature. Dynamic programming approaches
[5], [7], [12] discretize not only in time but also in state
space. Some approaches address other objectives, especially
energy-minimization [13], [14], but apply only to specific
objectives, e.g. integral of a time-independent running cost.
Direct transcription approaches tend to be the most general
[9], [15] but, even with second-order cone problem or sparse
linear algebra solvers, do not fully exploit the structure of
this scalar-function optimal control problem.

In this paper, we present a novel, linear-time algorithm for
solving Quadratic Objective Path Parameterization (QOPP).
Our algorithm matches the performance of TOPP-RA [16]
on TOPP problems while also solving QOPP problems in
linear time. Our contributions are as follows:

1) We share a re-interpretation of the TOPP-RA [16]
approach as factor graph variable elimination.

2) We extend the TOPP-RA approach to solve the trajec-
tory retiming problem with quadratic objectives.

3) We describe how the quadratic case can be extended
to arbitrary nonlinear objectives with iteration.

4) We write and benchmark a fast, C++ implementation.
5) We validate the utility of objectives other than mini-

mum time with real-world robot experiments.

II. APPROACH

In this section, we start by providing a brief recap of
the standard reparameterizations used in trajectory retiming.
We then introduce factor graphs by explaining the TOPP-
RA (Reachability Analysis) algorithm using a factor graph
interpretation. Finally, we use the factor graph approach to
extend the TOPP-RA algorithm to the QOPP problem.

A. Reparameterization

We define the TOPP problem as follows. Given a path
q(s) : [0, 1]→ Rn, we seek to find a reparameterization, s(t)
is a monotonically increasing function from [0, T ] → [0, 1],
which minimizes the total time T while satisfying a set of
general first and second order constraints:

s∗(t) = arg min
s(t)

T (1a)

subject to

A(s)q̈ + q̇TB(s)q̇ + f(s) ∈ C (s), (1b)
Av(s)q̇ + fv(s) ∈ C v(s), (1c)

where A,B,f denote coefficient matrix-, tensor-, and
vector- valued functions for general second order constraints;
Av,fv denote coefficient matrix- and vector- valued func-
tions for general first-order constraints; and C ,C v denote

convex polytope-valued functions of admissible values for
the corresponding constraints. For notational convenience,
we will assume these to be closed polytopes (so we can
use ≤), but everything applies to open intervals as well.
Arguments for q(s(t)), q̇(s(t)), q̈(s(t)), and s(t) in (1b) and
(1c) were omitted for readability. Equations (1b) and (1c)
apply to t ∈ [0, T ] (omitted for readability). Although rigid-
body equations of motion are most commonly notated with
C(q, q̇)q̇ instead of q̇TB(q)q̇, the latter is also standard [1],
[17] and valid for conservative systems.

1) Re-writing Constraints in Terms of s(t): Differentiat-
ing q(s(t)) with respect to t yields

q̇(s(t)) =
dq

ds
ṡ (2)

q̈(s(t)) =
d2q

ds2
ṡ2 +

dq

ds
s̈. (3)

Substituting into (1b) and (1c) yields constraints of the form:

a(s)s̈ + b(s)ṡ2 + c(s) ∈ C (s) (4)
av(s)ṡ + cv(s) ∈ C v(s), (5)

where a, b, c,av, cv are vector functions of s.
(5) can always be rewritten in the form of (4) since ṡ is

a scalar, positive function. Thus (5) can be written ṡmin ≤
ṡ ≤ ṡmax and squared. Our TOPP problem is now:

s∗(t) = arg min
s(t)

T (6a)

subject to a(s)s̈ + b(s)ṡ2 + c(s) ∈ C (s). (6b)

2) Discretization: As is common for TOPP convex opti-
mization and dynamic programming approaches (but not all
switching-search approaches), we discretize in s:

aks̈k + bkṡ
2
k + ck ∈ Ck. (7)

Defining:
x := ṡ2, u := s̈, (8)

we can rewrite (6b) as

akuk + bkxk + ck ∈ Ck (9)

and, remarkably, dx
ds = 2ṡdṡ

ds = 2dṡ
ds

ds
dt = 2s̈ = 2u.

Then assuming a zero-order hold on u (piecewise constant
between intervals), we introduce another constraint from the
relationship between x and u:

xi+1 = xk + 2uk∆s. (10)

The minimum-time objective can also be discretized:

T =

∫ 1

0

1

ṡ(t)
ds =

N−1∑
k=0

2∆s√
xk +

√
xk+1

, (11)

where the summation holds exactly for the piecewise-
constant assumption on u [18, Sec 6.1.1].

Finally, the objective min
∑

T can be achieved by greed-
ily selecting the maximum ṡk from the set of reachable
values at each time step, as long as ∆s is sufficiently small
[16]. Notationally, we can express this “greedy” selection
optimization problem as:



maximize
x0,...,xN ,
u0,...,uN−1

N∑
i=0

wkxk (12a)

subject to

akuk + bkxk + ck ∈ Ck, i = 0, . . . , N, (12b)
xi+1 − xk − 2uk∆s = 0 , i = 0, . . . , N − 1, (12c)

xk > 0 , i = 0, . . . , N (12d)

for some very large w, which denotes that each xk should
be taken greedily and irrespective of any other xk. Define
uN := 0 for notational simplicity of (12b).

Intuitively, the equivalence of the optimization problems
despite a different objective function is due to the facts that
(a) if a larger xk never sacrifices xk+1 to be smaller, then
the greedy approach works, and (b) there exists some critical
threshold ∆∗s such that, when ∆s ≤ ∆∗s , the former is true
for all k. Specifically, the former is true when the dynamics
coefficient 2∆s is smaller than ak/bk for all k. Though the
details of the proof require additional machinery to address
the fact that ak/bk is not defined for vectors, the intuition
is the same and given in [16].

Although we could remove uk from the optimization prob-
lem (12) by substituting uk = (xi+1−xk)/2∆s from (12c),
we opt not to because (1) it will make min-effort objectives
more natural when we extend to quadratic objectives and (2)
the factor graph elimination will do this automatically.

B. Solving the TOPP Problem with Factor Graphs
Although [16] solves the LP in O(N) time using a

reachability analysis approach, we can instead use factor
graph variable elimination to derive an equivalent algorithm.
We hope to be clear enough that factor graph elimination is
intuitive to readers, but we provide a brief introduction in the
Appendix for those who feel more comfortable with one.

The Factor Graph for TOPP: The factor graph for this
problem is given in Fig. 3. We will proceed eliminating one
variable at a time in the order u0, x0, u1, x1, . . . , xN−1, xN .

Eliminating u0: Following the reachable set elimination
ordering, we first eliminate u0 by solving the LP derived by
collecting only the terms in (12) that contain u0:

u∗0(x0, x1) = arg max
u0

(nothing)

subject to a0u0 + b0x0 + c0 ∈ C0,

x1 − x0 − 2u0∆s = 0.

In this case, although we have no objective function, the
solution is obvious because the dynamics fully constrain u0:

u∗0(x0, x1) =
1

2∆s
(x1 − x0). (15)

This optimal assignment is called a conditional (this would
be p(u0|x0, x1) in PGM literature) and is denoted by arrows
in Fig. 4. We then substitute u∗0(x0, x1) into (12b) to create
a new factor on the separator S(u0) = {x0, x1}:

a0 ((x1 − x0)/(2∆s)) + b0x0 + c0 ∈ C0. (16)

After eliminating u0, our factor graph looks like Fig. 4.
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Fig. 3. Factor graph graphically representing a 4-timestep instance of the
TOPP problem (12). Each variable node represents a variable xk or uk in
the LP. Each factor node represents a constraint (square) or objective (dot).
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Fig. 4. Factor graph (top) and the equivalent optimization problem (bottom)
after eliminating u0. The arrows denote a conditional u∗0(x0, x1) and the
new factor (16) is the result of substituting u∗0(x0, x1) into (12b).
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Fig. 5. Factor graph after eliminating u0, x0. The arrow (17) represents a
1-d LP we will backsubstitute at the end, and the new factor (18) denotes
the scalar inequality constraint propagated to x1 after eliminating x0.
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u∗k(xk, xk+1) =
1

2∆s
(xk+1 − xk). (13)

x∗k(xk+1) = max
xk

xk

s.t.
ak

2∆s
(xk+1 − xk) + bkxk + ck ∈ Ck,

xk,min ≤ xk ≤ xk,max,

xk > 0.


(14)

Fig. 6. After eliminating all the variables, we obtain a Bayes Net. Arrows
denote conditionals (13)(14) which we can efficiently back-substitute.



Eliminating x0: Next, eliminate x0 much the same way:

x∗0(x1) = max
x0

x0 (17a)

s.t.
a0

2∆s
(x1 − x0) + b0x0 + c0 ∈ C0, (17b)

x0 > 0. (17c)

For the purposes of variable elimination, we don’t need to
symbolically solve this LP, but instead we just need 2 things:

1) conditional: x∗0(x1), and
2) new factor: the resulting objectives/constraints on x1

after we substitute x0 = x∗0(x1).
For 1, we do not need an analytical expression (yet) so we

just store the conditional as the optimization problem (17).
For 2, the new factor will consist of an objective compo-

nent and a constraint component.
The objective component is easy: we can ignore it because

we will select x1 greedily. More formally, our new objective
factor will be x∗0(x1), but because we also have a pre-existing
factor wx1 where w is a very large number, our new objective
term is negligible in comparison (x∗0(x1)� wx1).

The constraint component of our new factor can be solved
with 2 LPs the same way as in [16]. Since x1 is a scalar, the
resulting constraint on x1 will take the form:

x1,min ≤ x1 ≤ x1,max. (18)

We compute the smallest and largest possible values of x1

that satisfy (17b), (17c):

x1,min = minimize
x0,x1

x1 subject to (17b), (17c), (19)

x1,max = maximize
x0,x1

x1 subject to (17b), (17c). (20)

These are very easy to solve in just a few dozen lines of
code since we need only optimize over 2, scalar variables.

After eliminating u0, x0 we have Fig. 5. We repeat the
elimination process on u1, x1, . . . , xN−1, xN until all vari-
ables are eliminated. The result is the Bayes Net in Fig. 6.

Back-substitution: We solve the Bayes Net by back-
substitution. The final elimination step will produce a
marginal on xN (p(xN ) in PGM literature) of the form:

x∗N = max
xN

xN

s.t. xN,min ≤ xN ≤ xN,max,

xN > 0,

(21)

whose solution is clearly x∗N = xN,max.
Then, we can compute x∗N−1 = x∗N−1(xN ) by substituting

xN ← x∗N into the conditional (14) and solving the now
single-variable scalar LP (which is just iterating through the
inequalities to find the lower bound) for xN−1. This process
is repeated until all variables are evaluated, and the resulting
sequence x∗0, . . . , x

∗
N , u∗0, . . . , u

∗
N−1 is the solution to (12).

Finally, the optimal time parameterization s∗(t) can be
obtained by integrating x∗ = ṡ∗. We defer to [16] for
the intracacies of parameterizing solution. As in [16], zero-
inertia points are accurate in the limit ∆s → 0. The time
optimal trajectory is q∗(t) = q(s∗(t)).

C. Solving the QOPP Problem with Factor Graphs

The variable elimination algorithm naturally extends to
other objectives because it remains unchanged no matter the
objectives or constraints; only the algebra of each elimination
step changes. Let us then define our (discretized) general
quadratic objective problem as:

arg min
x0,...,xN ,
u0,...,uN−1

N∑
i=0

x̃kQkx̃k + ũkRkũk + x̃kNkũk (22a)

subject to (12b), (12c), (12d), (22b)

where scalars x̃k := xk − xk,desired, ũk := uk − uk,desired,
and Qk, Rk, Nk are state, control, and cross cost weights.

Elimination of uk is identical to the TOPP case; see (13).
Similarly, the inequality constraint portion of the new factor
when eliminating xk is identical to the TOPP case; see (18)–
(20). Then, the new objective portion of the new factor
when eliminating xk is the only portion that changes (which
requires analytically computing the conditional as well).

Let us begin by computing the conditional x̃∗0(x̃1):

x̃∗0(x̃1) = arg min
x̃0

x̃0Q
′
0x̃0 + x̃1R

′
0x̃1 + x̃0N

′
0x̃1 (23a)

s.t.
a0

2∆s
(x1 − x0) + b0x0 + c0 ∈ C0, (23b)

x0 > 0. (23c)

where Q′0, R
′
0, N

′
0 were derived after eliminating ũ0 by

substituting ũ∗0 = 1
2∆s

(x1 − x0):

Q′0 := Q0 +
1

4∆2
s

R0 −
1

2∆s
N0 (24)

R′0 :=
1

4∆2
s

R0 (25)

N ′0 := − 1

2∆2
s

R0 +
1

2∆s
N0. (26)

In contrast to the TOPP case where we could use the
bang-bang property to delay solving of the LP until back-
substitution, we must actually solve this QP symbolically
as a function of x1. Fortunately, this is tractable for a 2-
dimensional (2 scalar variables) QP.

The solution to (23) is well-known to be piecewise linear.
As an intuition, without inequality constraints this is just the
minimum of a scalar quadratic function:

x̃∗0,unconstr(x̃1) = −b/(2a) (27)

= − N ′0
2Q′0

x̃1. (28)

After inclusion of inequality constraints, the solution will
be unchanged when no constraints are violated, but be the
convex feasible boundary when any are violated.

We then substitute the piecewise linear x̃∗0(x̃1) into (23a)
to obtain a piecewise quadratic new objective on x̃1. When
eliminating x̃1, the problem will have a similar form as (23)
but with a piecewise quadratic in place of (23a). Neverthe-
less, x̃∗1(x̃2) will still result be piecewise linear solution as
is a well-known result in parametric QP literature.

While the computational complexity of variable elimina-
tion for TOPP is exactly identical to [16] (3 trivial LPs for
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size shows (1) our algorithm is linear-time and (2) is faster than TOPP-
RA. Both algorithms are implementationed in C++, compiled with identical
compiler flags -O3;-flto, and run on the same M1 Macbook Air.

each timestep), the worst-case computational complexity for
quadratic objectives will be worse because the number of
segments in the piecewise quadratic objectives when elimi-
nating x̃k could be at most

∑k−1
j=0 Ij + 1 where Ij denotes

the number of inequality constraints on x̃j in the original
problem. In practice, however, we found that the number
of segments in each piecewise quadratic objective typically
did not grow with problem size thus maintaining linear time
complexity with respect to the number of timesteps.

III. EXPERIMENTAL RESULTS

To experimentally validate our algorithm, we implement
a C++ version of our algorithm [19] to analyze runtime
then apply it to a cable robot to demonstrate the efficacy
of quadratic objectives over the time-optimal objective.

A. Runtime

To validate the runtime and complexity of our algorithm,
we implement a C++ version of our algorithm and compare it
to the state-of-the-art TOPP-RA algorithm [20] on a sample
problem with varying problem size.

As shown in Figure 7, our implementation is linear-
time and has similar speed to TOPP-RA. We test a simple
problem: xk+1 = xk+(0.5)uk with constraint xk+uk ≤ 0.1.
The results are identical to 7 decimal places. Although
TOPP-RA appears to have a super-linear runtime, in most
applications a few hundred timesteps is sufficient so sub-
millisecond timing is expected from both algorithms.

Figure 8 shows that the runtime, even with quadratic
objectives, remains linear with problem size. Figure 9 further
evidences this fact by showing that the number of inequalities
carried forward from each time step remains roughly constant
throughout the optimization. Objectives x2

N +
∑

x2
k + u2

k

were added to the problem above to generate these results.
As discussed in Section II-C, completely general quadratic
objectives are supported.

B. Cable-Driven Parallel Robot Application

Operating at control limits for prolonged periods is often
undesirable for reasons such as safety, wear and tear, noise,
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Fig. 8. Runtime plot for a sample quadratic objective retiming problem
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and energy consumption. In such cases, it is preferable to
balance multiple objectives such as matching a desired speed
while also minimizing control effort.

This is especially true for cable robots, which have in-
herently low stiffness maintained primarily through internal
tension. Approaching control limits necessarily diminishes
the possible amount of internal tension causing reduced sta-
bility and increased risk of cable slackening. In this section,
we formulate the a quadratic objective retiming problem for
a cable robot path tracking problem, then quantitatively and
qualitatively show results running on a real robot.

1) Formulating the Cable Robot Tracking Problem: Due
to the nature of cable-driven parallel robots, it makes most
sense to define the path tracking problem in the task space
rather than the joint space. Just as serial manipulators can
express task space constraints in the joint space via the
Jacobian (but the other direction is more difficult), cable
robots can express joint space constraints in the task space
via the wrench matrix, W : defined by F = Wt implying
q̇ = W T ẋ, where F ,W , t, ẋ denote the force on the
end-effector, wrench matrix, cable tensions, and task space
velocity, respectively. Computing feasible polytopes C (s) :=
{F : ∃t ∈ [t−, t+] s.t. F = W (s)t}, we define then our
standard dynamics and constraints in the form (note: vector



x is distinct from scalar x):

A(s)ẍ + ẋTB(s)ẋ + f(s) ∈ C (s) (29a)
Av(s)ẋ + fv(s) ∈ C v(s). (29b)

We then apply the process in Section II-A to convert to (7).
For objectives, we seek to match a setpoint speed using ob-

jective q′
∥∥ẋT ẋ− v2

d

∥∥2
and maximize motor torque margin

using objective r ‖F −Wtm‖2, where q′, r are weighting
factors, vd is the desired speed, and tm is the arithmetic mean
of the minimum and maximum allowable tensions, similar
to [10], [21]. These can be expressed as:

q ‖x− xd‖2 + r ‖Au + Bx + C ′‖2 , (30)

with q := q′ ‖x′‖4, xd := v2
d/ ‖x′‖

2, x′ denotes the
derivative of x with respect to s, and A,B,C ′ are the same
coefficients as in the equations of motion except subtracting
off Wtm. These can, in turn, be combined to form a single
quadratic objective in the form Qkx̃

2
k + Rkũ

2
k + Nkx̃kũk,

computed by software. Note we still keep (29) for safety.

C. Robot behavior with QOPP vs TOPP

We solve the cable robot path tracking problem for a 2m/s
star-shaped trajectory with 1000 discretization points. Figs. 2
and 10 show the solution and execution result, respectively.
Tracking error measured with OptiTrack Motion Capture.

IV. DISCUSSION

By extending the trajectory retiming problem to a wider
domain, we potentially open opportunities for sharing tech-
niques with the broader trajectory optimization community.

One such opportunity is to generalize to arbitrary non-
linear objectives by employing an SQP strategy in which a
nonlinear optimization problem is repeatedly approximated
as a QP problem over a step direction [15]. This linear-time
algorithm is specific to the scalar structure of the problem,
so specialized trajectory retiming solvers may outperform
general solvers even for complicated objectives.

Another opportunity is to perform trajectory optimization
with alternating path and retiming optimizations. Whereas
time-optimal retiming would not apply due to differing
objectives, introducing quadratic objectives brings us closer
to sharing the same objectives, which would enable semi-
decoupled approaches. GTDynamics also uses GTSAM and
uses a time-scaling variable. Experiments in variable order-
ing have suggested such an approach may be promising [22].

V. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed a linear time algorithm for
solving trajectory retiming problems with quadratic objec-
tives (QOPP). We discussed some applications of quadratic
objectives, such as balancing objectives of fast speed and
keeping distance from control limits for improving safety and
robot wear. We described the algorithm by first reinterpreting
TOPP-RA using factor graphs, then extending the factor
graph algorithm to handle quadratic objectives. Finally, we
experimentally validated our algorithm’s runtime and perfor-
mance improvement on a cable robot path tracking problem.
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Trajectory Tracking Performance
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Fig. 10. TOPP (red) and QOPP (ours, green) used for a cable robot path
following task show that TOPP generates significantly more error (62mm
max tracking error) than QOPP (42mm max tracking error) due to saturating
controls. We combine video frames to visualize the robot moving (left).

APPENDIX

In this section we provide a brief introduction to factor
graph variable elimination for optimal control.

For readers new to Factor Graph Variable Elimination:

Think of factor graph variable elimination as a graphical
representation for the process of solving optimization prob-
lems “one variable at a time”. The optimal value for that
variable is given as a function of the other variables still
in the problem, and a new optimization problem is created
by substituting the optimal value for that variable into the
original problem. A key detail is that only the variables that
share a factor with the eliminated variable are involved in
the elimination process, thereby exploiting the sparsity of
the problem automatically. This process is repeated until only
one variable remains, at which point the solution is returned.

More formally, an optimization problem can be described
with a factor graph by denoting each of the variables to be
optimized as a “variable” node and each of the optimization
objective terms and constraints as a “factor” node, where an
edge connects each variable a factor depends on (see Fig.
3 as an example). Then to solve the optimization problem,
the variable elimination algorithm “eliminates” (solves) one
variable, x, at a time, passing its constraints and objective
terms as a new factor on the separator, S(x): the set of
variables sharing a factor with the eliminated variable. More
complete descriptions of factor graph elimination for solving
optimal control problems can be found in [10], [23], [24].

GTSAM [25] is a mature C++ software library that
implements factor graph variable elimination, including with
quadratic objectives and linear equality constraints. Architec-
turally, it allows easy extension to handle additional factor
types, such as inequality constraints, which we do later in
this paper. Clickable link back to II-B.

For readers familiar with factor graphs (especially GTSAM):

Consider that a factor with “zero-covariance” is a con-
straint. Then, for example, a graph containing only Gaussian
factors is equivalent to solving an equality-constrained linear
least squares problem. Please refer to [23] for additional
details, which we extend in this paper to handle inequality
constraints on scalar variables for certain problem structures.
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