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Abstract—In this work, we seek to generate robot trajectories
for artistic painting which exploit the dynamics unique to a robot
embodiment. Denoising Diffusion Probabilistic Models (DDPM)
have been shown to be effective at generating not only images, but
also many other continuous signals including robot trajectories
and stroke-based drawing paths. While existing works generating
stroke-based art using DDPMs produce computer renderings of
drawings, many roboticists and artists have previously identified
the value in creating physical artwork with an embodied AI. One
notable quality of artwork is the particularities of the medium
and tools used. Therefore, we seek to combine artistic stroke gen-
eration and dynamics-aware trajectory generation using DDPM
to generate strokes that capture both the artistic qualities of
the training data and of the robot embodiment. We compare
several approaches to extending stroke generation DDPMs to
respect robot dynamics, including alternative parameterizations,
training on modified data, classifier guidance, and classifier-free
guidance. We qualitatively show that classifier-free guidance most
effectively exploits the robot embodiment to generate visually
pleasing yet dynamically feasible painting trajectories.

I. INTRODUCTION

Robot art presents an ideal task for exploring human-robot
relationships. Creating art with robot assistance is inherently a
collaborative process between a human artist and robot in ne-
gotiating a result that reflects the artist’s intent while respecting
the robots strengths and weaknesses. It also generates physical
artistic artifacts as testaments to the cooperation, which can
reach different audiences in an emotional, visual, and intuitive
way that may be more accessible than traditional scientific or
engineering products. As exploring the qualities specific to the
artistic medium and tools (i.e. the robot painter in our case)
is both a core value of art and an excellent way to express
a robot’s strengths and limitations, generating artistic painting
trajectories which are tailored to a particular robot embodiment
is a valuable direction for human-robot interaction research.

Diffusion models have produced amazing advancements in
collaborative art generation in recent years. DDPMs for image
generation [12, 23] have enabled unprecedented abilities to
generate high-quality visual art with low effort, and efforts
in video generation [27], editing [15, 16, 23], consistency
[15, 9], and multi-modal LLMs [17, 18] have made the process
as collaborative and accessible as ever. Nevertheless, they
remain limited to exploring the space of computer renderings
and do not cross the boundary into human-robot interaction.
DDPMs have also been shown to apply well to robot trajectory
generation [13, 1, 5] and artistic stroke generation [30, 21]
separately, but haven’t studied the intersection of the two.
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Fig. 1. As an example application, editing trajectories using our DDPM
enables augmenting human input trajectories to be dynamically feasible while
retaining the graffiti style. Simulating robot execution of raw human inputs
(top), edits by diffusion w/o dynamics constraints (middle), and edits by
dynamics-aware diffusion using our Approach 3 (bottom) demonstrate the
importance of incorporating dynamics to ensure faithful robot execution.

Meanwhile, the field of robot painting has yet to leverage the
advantages unlocked by recent advances in DDPMs. Painterly
rendering [11] creates painting strokes but needs a target image
to recreate. The advent of CLIP [22] and diffvg [14] brought
the ability to optimize vector strokes suitable for painting
according to textual descriptions thanks to a fully differentiable
renderer and loss function [24, 25, 26, 28, 29], but the explicit
image rendering somewhat limits the ability to explore the
space of possible paintings. They also tend to struggle creating
longer strokes. Sketch-RNN and its variants [10, 7] are auto-
regressive approaches with a VAE-RNN architecture, but do
not exhibit the inference-time flexibility nor the long-range
relational capabilities of DDPMs. GAN-based approaches [8]
are also popular but suffer similar challenges. Finally, while
many works have custom brush models to exploit the unique
qualities of the brush painting medium, few if any works have
explored how coupling the artistic generation process with the
robot dynamics can lead to new and interesting artistic results.



In this paper, we present a DDPM-based system for gen-
erating artistic painting trajectories tailored to a particular
a robot painter. We train an unconditioned DDPM on the
#000000book graffiti drawings dataset, then investigate various
approaches for tailoring the DDPM to our particular cable
robot embodiment. Our contributions include:

• validating that DDPM trajectory generation (i.e. Diffuser
[13], SketchKnitter [30]) can generalize from robot tra-
jectories and doodles to graffiti-style painting strokes;

• identifying that coupling art generation and robot dynam-
ics offers artistic value and HRI benefits; and

• investigating several methods for combining artistic gen-
eration with trajectory optimization using DDPMs.

II. APPROACH

In this section, we first describe our DDPM model for
generating graffiti trajectories, then present various approaches
to tailoring the model to our robot embodiment.

A. DDPM for Graffiti Trajectory Generation

We base our non-robot-specific DDPM on Diffuser [13] and
SketchKnitter [30]. As our goal is just to study combining
artistic generation with the robot dynamics and not user
input modalities, we do not employ conditioning inputs such
as class, text, or images. We use a 1D U-Net architecture
(depth-3, kernel size 5, 100 diffusion steps) and generate the
state and action sequences together in the form of a 5xN
vector containing [x, y,∆x,∆y, PenUp]. We train the model
with a selection of 3000 drawings (of about 72000) from
the #000000book, centered and normalized (while preserving
aspect ratio) and training on random chunks of 512 points
within drawings to convergence. Thanks to the 1D U-Net
architecture, any-length trajectory can be generated, although
there is no global context.

B. Tailoring to Robot Dynamics

We rely on trajectory retiming [4, 19, 6] to create dynami-
cally feasible trajectories (i.e. w/ timestamps) for pre-existing
painting paths (i.e. w/o timestamps). Specifically, any path
can be turned into a dynamically feasible one by scaling the
artwork to the workspace size then applying retiming to find
a dynamically feasible speed profile to follow the path. We
compare several approaches to generating painting trajectories
tailored to our robot dynamics.

Baseline Approach – Decoupled Generation:
As a baseline, we first consider a decoupled approach where
we first generate an artistic path using the base, unconditioned
model from II-A, then apply retiming to make it dynamically
feasible. This approach is simple and easy to implement,
but the resulting painting does not clearly reflect the unique
dynamics of the robot since the painting was designed without
any consideration for the robot.

Dataset Drawings Unconditioned DDPM Outputs

Fig. 2. Output examples (bottom) of the DDPM trained by the #000000book
graffiti trajectories dataset (top). Note that we should expect the DDPM only
to match the “textures” of the dataset drawings but not the compositions since
we focus only on the combination of art generation and robot dynamics, and
thus do not give any global context signals.

Approach 1 – Training on Dynamically Feasible Data:
In this approach, we first apply trajectory retiming to each
drawing in the training set, then train the DDPM on the
dynamically feasible trajectory data. The resulting DDPM is
expected to generate trajectories that reflect the training data’s
adherence to the robot dynamics.

Approach 2 – Diffusion in the Control Space:
In this approach, we train the DDPM on the robot’s controls
directly, which typically have much simpler boundaries than
in the task space or the higher-level action space commonly
target by generative models (e.g. x/y/pen-up waypoints).

Approach 3 – Classifier-Guided Diffusion:
In this approach, we apply inference-time guidance based on
the robot constraints. Specifically, we (differentiably) compute
the joint controls needed to execute the path (assume constant
time interval between consecutive points) at each diffusion
step and use the constraint violation as a loss term to guide
the diffusion process.

Approach 4 – Classifier-Free Guidance:
In this approach, we train the DDPM on both retimed and non-
retimed data, with a conditioning input that indicates whether
the data is dynamically feasible. During inference time, we
supply the appropriate conditioning input (potentially scaled)
to generate dynamically feasible trajectories.

III. PRELIMINARY RESULTS

A. DDPM for Graffiti Trajectory Generation

Fig. 2 shows the output of the DDPM trained on the
#000000book dataset. Because the DDPM is unconditioned
and uses a U-Net architecture (which only has a limited
receptive field of only about 40 timesteps), we should only
expect the outputs to match the “textures” of the dataset
drawings but not the compositional aspects.

B. Tailoring to Robot Dynamics

In these preliminary experiments, we apply the simple
dynamics constraints of velocity and acceleration limits. We
define trajectory waypoints to be spaced at 50Hz (0.02s per
waypoint) and enforce maximum velocities and accelerations

https://000000book.com/
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Sample Generated Drawings

Baseline: Decoupled Generation Outputs

Approach 1: Training on Feasible Data, Outputs

Approach 2: Generating Controls, Outputs

Approach 3: Classifier-Guided DDPM Outputs

Approach 4: Classifier-Free Guidance Outputs

Fig. 3. Output examples of the various ap-
proaches to tailoring the DDPM to the robot
dynamics. The baseline approach (top) gen-
erates paths without considering the robot
dynamics, while the other approaches gen-
erate paths that respect the robot dynamics.
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Control Limits Adherences for Sample Trajectories

Fig. 4. Velocity and acceleration profiles for sample paths show that most approaches violate the constraints
a little bit. Approaches 2 and Baseline (parameterizing output as feasible region and running retiming after
generation, respectively) have the least violation (theoretically we expect them to have no violation), while
Approach 3 (classifier-guided diffusion) has the most. Single-timestep vertical spikes in velocity profiles are
pen-lifts and do not count as violations.



Fig. 5. The scaling factor used for classifier-free guidance conditions
the network to output trajectories more in the direction of the retimed (no
constraint violation) training trajectories. A scaling factor of 1.3 was used in
Figs. 3 and 4.

Fig. 6. Trajectory editing application demo allows the user to interactively
create AI-assisted robot painting trajectories. The user draws a trajectory
(left, thin black lines) while the diffusion model modifies it in real-time (left,
thick colored lines) to be both dynamically feasible and stylistically similar
to the training data (#000000book, Fig. 2 left). In this example, the input
trajectory (center) is modified using a DDPM into a dynamically feasible,
stylized trajectory (right) reflecting the training data distribution.

of 0.2m/s and 0.4m/s2, respectively, for each of x and y when
the pen is down. Although we do not yet address it in this
work, we believe joint state-action limits would be much more
interesting, since there are many instances where the edges of
the workspace do not permit as much control authority which
we hope would be captured in the compositions.

The implementation details of the various approaches are as
follows. For those using trajectory retiming (baseline, 1, 4),
we apply the TOPP-RA algorithm [19, 20] with the velocity
and acceleration limits (see Fig. 7). For approach 2 (diffusion
in the control space), we rescale the network outputs using a
sigmoid function to generate acceleration outputs in the range
[−0.4, 0.4] and integrate them to get velocities and positions
(clipping velocity as needed). For approach 3, we use a simple
relu barrier function to penalize each velocity and acceleration
exceeding the limits.

C. Simulating Robot Execution

Fig. 1 simulates the robot execution using a velocity and
force-limited feed-forward PID controller and a Forward Euler
simulation with force control. The hard limits are set to 50%
above the soft limits of 0.2m/s and 0.4m/s2.

IV. DISCUSSION

We observe that different approaches will exhibit different
performances for our two primary objectives: (1) dynamic fea-
sibility and (2) artistic generation unique to the embodiment.
The former is quantifiable and can be observed in Fig. 4 while
the latter is more qualitative and can be observed in the sample
trajectories from Fig. 3.
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Fig. 7. Example of trajectory retiming. The original stroke trajectory (left) is
retimed (right) to respect the velocity and acceleration limits (dashed-black).
We apply time-optimal retiming, which minimizes the time taken to execute
the trajectory subject to the constraints. Discretization causes minor violations.

Subjectively, we observe Approaches 1 (training on retimed
data) and 4 (classifier-free guidance) to perform the best in
terms of balancing drawing quality and dynamic feasibility.
Their similar performance is not surprising given that we have
just 2 classes for classifier-free guidance. While the Baseline
(apply retiming after generation) and Approach 2 (map output
space to feasible region) both have less constraint violation
(as expected, since they explicitly enforce the constraints),
the baseline appears to produce less fluid paintings while
Approach 2 produces overly simplistic ones. Based on previ-
ous experiments (omitted), we believe the task of generating
lower-level control signals is more difficult to learn than
generating higher-level state and action sequences. Finally,
Approach 3 (classifier-guided diffusion) produces reasonable
quality paintings but has the most constraint violation.

V. CONCLUSIONS AND FUTURE WORK

In this work, we seek to generate robot trajectories for
artistic painting which exploit the dynamics unique to a robot
embodiment. We compare several approaches for incorpo-
rating robot dynamics into the artistic trajectory generation
process and find that classifier-free guidance and training on
dynamically feasible data both work well.

In the future, we plan to extend this work by incorpo-
rating more realistic dynamics constraints and executing the
generated trajectories on the physical graffiti spray painting
robot from [2, 3]. We also plan to generate more useable
artistic trajectories through a number of architectural upgrades
including conditioning on a target image, CLIP embedding,
or class and replacing the 1D U-Net with an attention-based
model for global context. Finally, we plan to more rigorously
evaluate both the artistic qualities and dynamic feasibilities of
the generated trajectories.
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