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Abstract

Hyperspectral Imagery (HSI) has been used in many
applications to non-destructively determine the material
and/or chemical compositions of samples. There is grow-
ing interest in creating 3D hyperspectral reconstructions,
which could provide both spatial and spectral informa-
tion while also mitigating common HSI challenges such as
non-Lambertian surfaces and translucent objects. How-
ever, traditional 3D reconstruction with HSI is difficult due
to technological limitations of hyperspectral cameras. In
recent years, Neural Radiance Fields (NeRFs) have seen
widespread success in creating high quality volumetric 3D
representations of scenes captured by a variety of camera
models. Leveraging recent advances in NeRFs, we pro-
pose computing a hyperspectral 3D reconstruction in which
every point in space and view direction is characterized
by wavelength-dependent radiance and transmittance spec-
tra. To evaluate our approach, a dataset containing nearly
2000 hyperspectral images across 7 scenes and 2 cameras
was collected. We perform comparisons against traditional
RGB NeRF baselines and apply ablation testing with alter-
native spectra representations. Finally, we demonstrate the
potential of hyperspectral NeRFs for hyperspectral super-
resolution and imaging sensor simulation. We show that our
hyperspectral NeRF approach enables creating fast, accu-
rate volumetric 3D hyperspectral scenes and enables sev-
eral new applications and areas for future study.

1. Introduction
Hyperspectral imagery is a useful tool in many applications
for non-destructively characterizing material and chemical
compositions. For example, HSI is used in agriculture to
assess plant health and nutrient content, in medicine to di-
agnose diseases, and in drilling to view otherwise invisi-
ble gasses like methane. In contrast to typical RGB images
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Figure 1. Instead of 3 color channels for each pixel, hyperspectral
images have many color channels measuring the spectral signa-
ture for every pixel. In this work, we leverage recent advances in
Neural Radiance Fields to create hyperspectral 3D scene represen-
tations. Top: Our HS-NeRF architecture with continuous wave-
length representation. Bottom: Sample novel views rendered with
our HS-NeRF model.

which have 3 color channels for each pixel, hyperspectral
images consist of tens to hundreds of color channels (wave-
lengths) for each pixel and typically have minimal spectral
overlap among channels. Because different materials and
molecules have different reflectance, transmittance, and/or
fluorescence properties at different wavelengths, hyperspec-
tral data may be used to infer the composition of a sample.

Hyperspectral 3D reconstruction has recently been gain-
ing interest given its unique and powerful applications
[10, 15, 17, 18, 24, 27, 31]. In addition to potentially en-
abling estimation of material property distribution through-
out a sample for e.g. contaminant detection and plant health
monitoring, employing 3D method may also ameliorate
signal-to-noise ratio (SNR) and illumination angle depen-
dence by fusing information from many images. NeRF-
based 3D reconstruction in particular addresses many chal-
lenges unique to hyperspectral data [13, 14, 17, 24]: better
reconstructions and volumetric radiance field representation
provides continuous spatial interpolation and translucency
modeling, in contrast to the sparse point-cloud representa-
tions in traditional SfM or multi-view stereo approaches.

Building on prior works which represent spectral signa-
tures with a discrete number of wavelengths, we propose us-
ing wavelength as a continuous input to the NeRF, allowing
native interpolation of wavelength for improved flexibility
and applications such as hyperspectral super-resolution.



Our contributions are as follows:
• Collect and share a dataset of ~2000 hyperspectral im-

ages suitable for hyperspectral 3D reconstruction,
• Identify special considerations needed for NeRFs to ac-

commodate hyperspectral camera limitations,
• Introduce our HS-NeRF model for HyperSpectral 3D re-

construction with continuous wavelength representation,
• Validate HS-NeRF with evaluations and ablations, and
• Demonstrate potential applications of HS-NeRF.

2. Related Works
Hyperspectral Imagery.

We defer to the many high-quality review papers on HSI and
its applications, such as [7]. However, we briefly motivate
the need for hyperspectral 3D reconstruction and discuss
some practical considerations of hyperspectral cameras.

Challenges that have been identified in hyperspectral lit-
erature include the black-box nature of correlating spectra
with sample properties [7], the low signal to noise ratio [15],
and the high cost and inconvenience of high-resolution hy-
perspectral imaging. We believe that fusing multiple hyper-
spectral images into a 3D model can help scientists develop
more mechanistic understandings of hyperspectral data and
improve the signal to noise ratio. Further, we believe many
recent advances surrounding NeRFs, such as NeRF in the
Dark [20] and Deblur-NeRF [16], may help extract more
information with cheaper HSI sensors.

3D reconstruction is particularly difficult due to a few
undesirable properties of HSI cameras. First, there is a
tradeoff between spatial, spectral, and temporal (exposure
time) resolution such that obtaining a low-noise, high-
resolution image with many wavelength bands will neces-
sarily require a long (typically on the order of minutes) ex-
posure time. Second, lenses for hyperspectral cameras are
limited in power due to the wavelength-dependent index of
refraction of glass (even IR-corrected glass is not perfect),
which creates more exaggerated chromatic aberration and
increases the cost of optics. Many hyperspectral cameras
have narrow fields of view as a result, while still suffer-
ing from inconsistent focus across wavelengths and narrow
depths of field. Finally, aperture size is typically bounded
due to interactions with order-blocking filters which correct
diffraction side-effects, further limiting the ability to cap-
ture clear images in varying environments. We discuss how
we address these challenges for our dataset and approach.

Hyperspectral 3D Reconstruction.

Creating hyperspectral 3D reconstructions from hyperspec-
tral images has been attempted in the past with point cloud-
based methods. [31] creates separate point clouds for each
wavelength channel then merges them to create a hyper-

spectral point cloud while [15] directly performs Structure-
from-Motion (SfM) on the hyperspectral data. Extending
this, [18] designs custom hyperspectral keypoint feature de-
scriptors for hyperspectral images to aid in 3D reconstruc-
tion, while several other works also address hyperspectral
features for image classification [12]. However, SfM ap-
proaches often generate only sparse point clouds and HSI
may often be too noisy and low resolution to obtain good
multi-view stereo results. Further, point clouds typically do
not provide sufficient occupancy information to accurately
compensate for shadows and lighting variations. [27] takes
a different approach and designs a hyperspectral structured
light project device to measure 3D hyperspectral informa-
tion. Somewhat similarly, [10] projects hyperspectral im-
ages onto existing 3D geometry models. However, these
are not as flexible or scalable as a camera-only solution.

Neural Radiance Fields.

Neural Radiance Fields (NeRFs) have exploded [4] in pop-
ularity since the original paper by Mildenhall et al. was
published [20]. NeRFs present a deep-learning approach
to obtaining a high quality 3D representation of a scene by
learning a function mapping the location of a point in space
and the direction from which it is being viewed to color ra-
diance and volume density. To determine the color a pixel of
an image should take, a rendering step queries the function
along the pixel’s corresponding image ray and composites
the colors according to classical volume rendering [20].

We directly leverage several advancements in NeRF such
as Instant-NGP [22] and the open-source nerfstudio pack-
age and nerfacto implementation [25], upon which we build
our implementation. We also draw inspiration from many
related works. For example, several spatio-temporal [5, 26],
deformable, and other NeRF works [6] append a scalar time
variable to the 3D location input similar to an approach
we compare against concatenating wavelength to location.
Similarly, Zhi et al.’s semantic NeRF work using implicit
scene representations for semantic super-resolution [30] in-
spires our continuous wavelength representation for hyper-
spectral super-resolution.

Several works could also complement our work well and
we hope future research can incorporate their techniques for
HS-NeRF. For example, RawNeRF [20] and NAN [23] both
leverage NeRF’s information fusing ability for low-light de-
noising which could help reduce the exposure time required.
RawNeRF applies post-processing on the NeRF instead of
the input photos, which could be applied to mitigate arti-
facts of hyperspectral cameras such as order-blocking filter
interference. AR-NeRF [9] and Deblur-NeRF [16], which
address depth of field/defocus and motion blur, respectively,
could also be useful given the long exposure times and aper-
ture limitations of hyperspectral cameras.



NeRF-based Hyperspectral 3D Reconstruction

Recently, several works have studied NeRFs beyond RGB.
[17] is most similar to our work, adapting the output of
the NeRF “color” field from 3 channels to 34 to gener-
ate a hyperspectral NeRF for the application of data aug-
mentation. [24] also uses separate output channels, but ad-
dresses aligning multiple different cameras (and modalities)
to the same 3D scene via pose alignment. [13, 14] goes a
step further and optimizes each camera’s spectral sensitiv-
ity function (SSF) with spectral signatures parameterized
as finite-dimensional vectors. We extend these works by
using a continuous wavelength representation (rather than
discrete wavelengths corresponding to vector indices, e.g.
a 34-channel output parameterizes the spectral signature as
the intensities at 34 discrete wavelengths).

Hyperspectral Super-Resolution.

Evidenced by numerous papers, datasets [1], and compe-
titions [2], the hyperspectral super-resolution task has be-
come increasingly popular. Hyperspectral super-resolution
may refer to obtaining more wavelength resolution (i.e. use
an RGB or multi-spectral image to predict a hyperspectral
image), obtaining more spatial resolution (i.e. use a low-
resolution hyperspectral image to predict a higher resolution
one), or more commonly fusing together information from
complementary sensors [1, 8]. Perhaps the most similar to
this work is [28] which uses an implicit neural representa-
tion to predict a higher resolution image using a continuous
function mapping pixel coordinate to color. We extend their
work to 3D and put it in the context of NeRFs.

We are also proud to publish our dataset of almost 2000
hyperspectral images; one plausible reason for the rela-
tively greater popularity of hyperspectral super-resolution
over hyperspectral 3D reconstruction is the lack of publicly
available datasets for the latter.

In summary, we believe our work is highly complemen-
tary to existing works and supports a promising new direc-
tion in 3D hyperspectral reasoning research.

3. HS-NeRF
Building on the “nerfacto” [25] implementation, we discuss
3 modifications for HS-NeRF to accomodate hyperspectral
data: (1) color radiance prediction, (2) transmittance spec-
trum prediction, and (3) proposal network modification.

As compared to a (H,W, 3) RGB image, a hyperspectral
image can be represented by a (H,W,N) tensor, where H
and W are the height and width of the image, and N is the
number of channels/wavelengths.

Instead of directly predicting an N -dimensional color ra-
diance, we choose to represent color radiance and transmit-
tance both as continuous spectra: functions of wavelength.
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Figure 2. To handle hyperspectral data, we include a wavelength
input to our network which predicts a scalar color intensity and a
scalar transmittance. The network produces spectra for the color
intensity and transmittance via the latent vectors ΘC and Θσ , re-
spectively, and networks C(λ;ΘC) and σ(λ;Θσ) compute the
value of the spectra at the queried wavelength.

We do so by predicting latent vectors which represent pa-
rameters of learned spectral plots which can then be evalu-
ated for a given wavelength as shown in Fig. 2.

In this section, we describe the math formulations and
some implementation details, though we also discuss and
compare alternatives in Sec. 5.3. For additional details,
please refer to the supplementary materials.

3.1. Color Radiance Spectrum Prediction

We predict the continuous radiance spectrum by first pre-
dicting a latent vector ΘC representing the parameters of a
learned spectral plot. We then obtain the radiance cλ for a
given wavelength λ by passing the latent vector together
with the a sinusoidal positionally encoded wavelength λ
through a decoder C. Formally, whereas the nerfacto (base-
line) network outputs the color intensity on a ray as:

C0 : (x,d) → c := (r, g, b) (1)

where x := (x, y, z) and d := (θ, ϕ) are the location and
view direction of the ray, respectively, we predict the color
radiance spectrum as:

C : (λ; ΘC(x,d)) → cλ (2)

where Θc(x,d) is a network that maps the ray’s location
and view direction to a latent vector Θc, which parameter-
izes a spectral signature decoded by the network C.

3.2. Color Transmittance Spectrum Prediction

Similarly, the transmittance spectrum describes a
wavelength-dependent volume density. In other words,
instead of using a scalar density field to describe the



transparency of the scene, we investigate the possibility of
using a wavelength-dependent density field.

Although wavelength-dependent transmittance can also
be applied to RGB scenes, it is generally more interesting
for hyperspectral imagery due to the fact that many materi-
als are transparent in visible wavelengths but opaque in IR
or vice-versa (e.g. glass, plastic bags).

In the original and nerfacto NeRF implementations, the
volume density is given by a scalar function σ(x). Instead,
we choose to model the volume density in much the same
way as for color radiance: a network Θσ(x) predicts a la-
tent vector Θσ parameterizing a function of the wavelength
decoded by another network:

σ : (λ; Θσ(x)) → σλ (3)

where σλ denotes the density at wavelength λ.

3.3. Wavelength-dependent Proposal Network

Finally, when choosing a wavelength-dependent volume
density, it may also be natural to make the sample proposal
network (analagous to the “coarse” network) wavelength-
dependent. Including such a dependence may be especially
useful in larger scenes with many partially transparent ob-
jects (such as plastic films). However, in ablations with
our dataset, we found that doing so did not improve perfor-
mance and caused more training instability. Furthermore, as
we/nerfacto use the proposal loss from Mip-NERF 360 [3]
which encourages the coarse loss to be an upper bound of
the fine-level density network, the proposal network is pe-
nalized when it under-estimates any wavelength’s density.

4. Dataset and Preprocessing
Before training NeRF models on hyperspectral images,
we first collect images using a hyperspectral camera and
turntable, apply preprocessing, and obtain camera poses and
intrinsics by running COLMAP on pseudo-RGB images.

4.1. Data Collection Setups

To demonstrate the generalizeability of our approach, we
compose our dataset of scenes using two different hyper-
spectral cameras. The imaging setups are shown in Figs. 3
and 4, and full details on the cameras and data collection
procedure are available in the supplementary materials.

4.2. Image Acquisition and Preprocessing

As mentioned in Sec. 2, hyperspectral cameras have inher-
ent non-idealities that must be accounted for when collect-
ing data. We focus our discussion on the two following hy-
perspectral cameras:

(a) The Surface Optics SOC710-VP has a high spatial
(696 × 520 pixels) and spectral resolution (N = 128)
at the expense of poor temporal resolution (long exposure

Figure 3. The Surface Optics SOC710-VP camera is mounted on
a tripod and the sample of interest is placed on a turnable in a
Macbeth SpectraLight lightbooth with a light gray background.
The camera is roughly 2 meters away from the scene due to its
shallow depth of field and narrow field of view.

Figure 4. The BaySpec GoldenEye camera is held with a labo-
ratory clamp and the sample of interest (here, an Anacampseros
plastic plant) is placed on a turnable under tungsten halogen light-
ing. The camera is roughly 20 centimeters away from the scene
thanks to its wide field of view.

time) and extends from 370nm to 1100nm causing some
wavelength-dependent refractive index effects (blurry and
misaligned in far-IR).

(b) The BaySpec GoldenEye camera also has a high spa-
tial (640 × 512 pixels) and spectral (N = 141) resolution
over the range 400 – 1100nm. Unlike the other camera, this
one is of the ”snapshot” type, meaning that an hypercube
can be captured almost instantly, in around 3 seconds, but
at the expense of significant grain and noise.

First, for both cameras, interactions with glass lenses and
diffraction gratings necessitate careful choice of aperture
size and lens. In short, the wavelength-dependent refrac-
tive index of glass (even for IR-corrected lenses) necessi-



Figure 5. By visually inspecting the same image of the basil plant
in several different wavelengths, it becomes obvious that the ad-
ditional information afforded by HSI makes background removal
significantly easier than in RGB images.

tates a small aperture to keep all wavelengths in focus while
diffraction effects necessitate a large aperture to satisfy the
criteria for the order-blocking filter commonly used in hy-
perspectral cameras. In response, the Surface Optics camera
uses a pre-calibrated 35mm lens with F5.6 aperture, and we
place it around 2 meters from the scene to both increase the
depth of field and accommodate the narrow field of view of
the lens. We find that far-IR wavelengths are slightly out
of focus (e.g. Fig. 5) and, although they are not particularly
problematic in this work, techniques from [9, 16] may be
used. The BaySpec camera, on the other hand, has a pre-
calibrated 8mm lens of 40° field of view that we use with a
F16 aperture and place at just 20cm from the scene.

Second, the image backgrounds do not rotate with the
scene so they must be removed from the images. Fortu-
nately, background removal is straightforward when lever-
aging hyperspectral data, as illustrated in Fig. 5 where wa-
ter in the paint is highly reflective in IR compared to the
painted background. We set the background color to pure
white: 255 (Surface Optics) or pure black: 0 (BaySpec) in
all wavelength channels.

4.3. Computing Camera Poses and Scene Bounds

To compute the camera intrinsics and extrinsics necessary
to train NeRF models, we create grayscale images to use in
COLMAP: an off-the-shelf SfM package. We generate the
gray-scale images by selecting the channel with the greatest
foreground intensity variance. Due in part to the narrow
field of view (Surface Optics), low resolution, chromatic
aberration (Surface Optics), and grainy noise (BaySpec)
compared to e.g. smartphone cameras, we need to use an
undistorted pinhole camera model (distortion parameters
caused poor optimization results), have many high-quality
features in the scene (which we achieve using AprilTags
[11]), and apply a strict matching threshold (inlier ratio ≥
0.70, # inliers ≥ 25).

Finally, as a byproduct of the narrow field of view of
the Surface Optics camera, we also find it imperative to
crop the ray sampler tightly to the scene to avoid sampling

points that are only visible in a few cameras. Failing to do
so results in “cheating” whereby the NeRF model synthe-
sizes many 2D “screens” in front of each camera outside
the field of view of the other cameras instead of a single
consistent 3D object. To determine suitable ray sampling
bounds, we canonicalize the camera poses and compute the
“scene” bounding box, which describes the ray sampler’s
bounds, by projecting the cameras’ fields of view onto the
xz and yz planes (see Fig. 9 in Supplementary).

4.4. Dataset Scenes

We collect the following datasets, depending on the camera:
(a) With the Surface Optics camera, we collect a dataset

of 4 scenes of 48 images each, with 2 of the scenes exhibit-
ing intricate plant geometry (“Rosemary” and “Basil”) and
the other two exhibiting several objects with wavelength-
dependent transparency and radiance/reflection (“Tools”
and “Origami”). Given the hyperspectral camera’s strength
in measuring wavelength and comparative weakness at cap-
turing spatial resolution, we expect the latter two scenes to
be more challenging.

(b) With the BaySpec camera, we collect a dataset of 3
scenes of 433 images each, all exhibiting intricate plant ge-
ometry (“Anacampseros” and “Caladium” made of plastic,
and a “Pinecone”).

5. Experiments and Discussion
We train HS-NeRFs on the 7 scenes from our dataset and
compare the results both quantitatively and qualitatively
(see supplementary). We evaluate the reconstruction accu-
racy of the network compared to a nerfacto baseline and run
an ablation. We also present sample applications of hyper-
spectral super-resolution and camera sensor simulation.

5.1. Evaluation Metrics

Validation Set

The validation set is formed the standard way as in the
NeRF literature: 90% of the images in the dataset are used
to train and the other 10% used for validation by comparing
the actual image with the NeRF prediction.

Metrics

As is standard in NeRF literature, we present the Peak Sig-
nal to Noise Ratio (PSNR), the Structural Similarity Index
Measure (SSIM), and the Learned Perceptual Image Patch
Similarity (LPIPS) metrics. Note that, for LPIPS, we use
pseudo-RGB images extracted as described in Sec. 6.2: as
the integral of the product between RGB spectral sensitiv-
ity curves and the pixel’s intensity spectrum. In addition to
quantitative metrics, we also provide a qualitative compari-
son of synthesized images.



Table 1. RGB Results
Our HS-NeRF approach outperforms the NeRF baseline (nerfacto) for RGB images (N=3 wavelengths).

Surface Optics Datasets

Method Rosemary Basil Tools Origami
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

nerfacto 18.789 0.868 0.089 16.147 0.714 0.229 11.760 0.338 0.492 10.371 0.220 0.560
Ours-Cont 18.530 0.861 0.086 16.288 0.742 0.227 12.168 0.385 0.533 10.741 0.289 0.562
Ours-RGB 18.601 0.865 0.083 16.780 0.765 0.212 11.456 0.321 0.501 10.870 0.301 0.520
Ours-HS 18.327 0.886 0.083 16.548 0.664 0.172 15.591 0.575 0.489 10.359 0.453 0.693

BaySpec Datasets

Method Anacampseros Caladium Pinecone
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

nerfacto 14.413 0.626 0.432 14.190 0.555 0.503 14.120 0.323 0.464
Ours-Cont 14.171 0.626 0.437 14.306 0.543 0.507 13.868 0.382 0.414
Ours-RGB 14.321 0.619 0.435 14.249 0.569 0.501 15.412 0.615 0.442
Ours-HS 20.315 0.726 0.297 19.084 0.705 0.530 20.066 0.580 0.885

5.2. RGB

We can first evaluate our hyperspectral approach on RGB
images using stock nerfacto as a baseline. This is possi-
ble since a standard RGB image can be interpreted as an
N = 3-channel hyperspectral image, and our approach can
generalize to any number of channels. Instead of using stan-
dard RGB datasets, we test using pseudo-RGB images gen-
erated from our dataset as described in Sec. 6.2 to maintain
the noise, aberration, and other effects present in the origi-
nal hyperspectral images.

In addition to training our HS-NeRF network directly
with 3 wavelengths (“Ours-Cont”) and training a stock ner-
facto model (“nerfacto”), we also consider two other com-
parisons. First, we train a modified version of the network
in Row 2 of the ablations to output 3 discrete radiance and
3 discrete density channels (“Ours-RGB”). Second, we pro-
vide the metrics for a HS-NeRF network trained and eval-
uated on the full, 128-channel hyperspectral image (“Ours-
HS”), which serves to show that extending from RGB to
hyperspectral does not significantly degrade performance.
For Ours-HS, We evaluate LPIPS on pseudo-RGB images
extracted as described in Sec. 6.2.

Our hyperspectral approach outperforms the baseline in
almost every category. This is extremely pronounced for
the BaySpec datasets (bottom) which have significant noise
in the ground truth images. As a result, the model trained
on the full hyperspectral data is more robust by virtue of
the additional information given across different frames and
wavelengths - similar to how camera calibration and 3D
computer vision can often achieve sub-pixel accuracy.

5.3. Ablations

Instead of the HS-NeRF network described in Fig. 2, we
also compare against simpler approaches to constructing
hyperspectral NeRFs. We investigate the following simpli-
fications (including one which is very similar to [17]):

1. The transmittance function is not wavelength dependent
(scalar).

2. Instead of inputting the wavelength, the network simply
outputs 128 channels (instead of 3 for RGB).

3. The wavelength is instead input as another spatial di-
mension similar to the way time is handled in time-
varying NeRFs [5, 26].

We also investigate making the proposal networks
wavelength-dependent as discussed in Sec. 3.3.

We denote the options for the radiance spectrum as:

(ours) C :(λ ; Θc(x,d))→ cλ

C1 : (x,d) → (cλ1 , . . . , cλN )

C2 : (λ,x,d) → cλ,

where in C2, λ is concatenated with x before the hash en-
coding.

Similarly, we denote the options for density spectrum as:

(ours) σ :(λ ; Θσ(x)) → σλ

σ0 : (x) → σ

σ1 : (x) → (σλ1 , . . . , σλN )

σ2 : (x, λ) → σλ.

Finally, for the proposal network we only consider P0,
which denotes baseline nerfacto network, and Pλ, which de-
notes a proposal network augmented with the wavelength.

The ablation results are shown in Tab. 2 and a representa-
tive sample shown in Fig. 6. We first observe that the contin-
uous representations perform consistently well. Meanwhile,
the discrete approaches excel at the noisy images from the
BaySpec camera but struggle with the cleaner (but fewer)
images from the Surface Optics scenes. Although not quan-
titatively represented, C2, σ2 is significantly harder to train,
frequently diverging and taking 3 times as long on average
due to the fact that full passes through the network must
be evaluated for every wavelength. We also observe that



Table 2. Ablations
Continuous wavelength representations perform similarly while enabling several additional applications

Surface Optics Datasets

Network Rosemary Basil Tools
Archictecure PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

C1 σ0 P0 18.703 0.883 0.096 15.820 0.756 0.234 15.335 0.588 0.553
C1 σ1 P0 18.432 0.873 0.106 15.882 0.760 0.247 14.375 0.431 0.709

(ours) C σ0 P0 18.327 0.886 0.083 16.548 0.664 0.172 15.591 0.575 0.489
C σ P0 17.477 0.863 0.090 16.532 0.792 0.237 7.192 0.331 0.733
C2 σ2 P0 19.744 0.895 0.076 16.393 0.776 0.207 15.708 0.642 0.568
C σ Pλ 17.494 0.851 0.128 15.265 0.704 0.312 13.221 0.399 0.663

BaySpec Datasets

Network Anacampseros Caladium Pinecone
Archictecure PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

C1 σ0 P0 20.279 0.734 0.295 19.084 0.705 0.530 20.102 0.729 0.399
C1 σ1 P0 20.128 0.729 0.305 19.933 0.678 0.495 19.857 0.726 0.372

(ours) C σ0 P0 20.315 0.726 0.297 19.428 0.687 0.523 20.162 0.740 0.409
C σ P0 20.095 0.705 0.320 18.942 0.653 0.514 19.596 0.729 0.409
C2 σ2 P0 21.259 0.711 0.319 18.989 0.595 0.568 19.732 0.561 0.434
C σ Pλ 15.031 0.667 0.351 15.930 0.626 0.556 15.700 0.485 0.484

the choice of transmittance function has little effect on the
results, with Rows 1-2 matching well and Rows 3-4 match-
ing well. Qualitatively (see supplementary), we can also
observe that all methods except the wavelength-dependent
proposal network perform well. Finally, we observe that our
approach appears to have overall the best performance.

6. Example Applications

The ability to represent a scene with a radiance field that is
continuous not only in position and view direction but also
in wavelength opens up a variety of applications which we
very briefly demonstrate here.

6.1. Hyperspectral Super-Resolution

Hyperspectral super-resolution, in which we seek to (a) turn
a multispectral image (with fewer wavelengths than a hy-
perspectral image) into a hyperspectral image (with more
wavelengths) or (b) turn a low-resolution hyperspectral im-
age into a higher resolution image, is an increasingly pop-
ular challenge in computer vision. Zhang et al. has al-
ready applied a similar continuous spectral network rep-
resentation to 2D hyperspectral super-resolution [29], and
leveraging multi-view consistency may further improve the
performance of existing hyperspectral super-resolution ap-
proaches.

We demonstrate hyperspectral super-resolution on our 8
image sets by witholding entire images and entire wave-
lengths from the training sets and evaluating the hyper-
spectral image predictions. To characterize the accuracy vs
super-resolution factor, we train the same NeRF architec-
ture 4 separate times: first using the full 128 wavelengths,
then with only 64, 32, and 16 evenly sampled wavelengths.
During evaluation, the networks must generalize to both un-
seen images and unseen wavelengths.
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Figure 6. Comparing images (Caladium dataset, validation image)
rendered by different networks, most methods perform similarly
except the wavelength-dependent proposal network.

# Wavelengths Ch. 15 Ch. 35 Ch. 55 Ch. 75 Ch. 95
in Train Set (447nm) (550nm) (654nm) (760nm) (868nm)

Ground
Truth

128
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32
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Figure 7. We visually observe the ability of HS-NeRF to inter-
polate wavelengths unseen in the training set. None of the wave-
lengths from this image were used in training (except 128 channel
case), and none of the images used in training used these wave-
lengths (corresponds to Both Unseen in Tab. 3). We color images
using the “jet” colormap from matplotlib for easier perception.



Table 3. Hyperspectral Super-Resolution
The relatively small drop in performance when withholding even the vast majority of the wavelengths from
training supports the claim that continuous radiance and transmission spectra are well suited for HS-NeRF.

Basil Dataset
# of Wavelengths Train Set Unseen Images Unseen Wavelengths Both Unseen

in Train Set PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑

128 20.378 0.848 0.255 16.493 0.798 0.288 N/A N/A N/A N/A
64 19.893 0.839 0.246 16.534 0.786 0.277 20.005 0.834 16.651 0.782
32 19.460 0.825 0.264 16.229 0.781 0.296 19.447 0.820 16.258 0.777
16 14.592 0.759 0.272 13.586 0.717 0.306 14.656 0.759 13.641 0.717

Anacampseros Dataset

# of Wavelengths Train Set Unseen Images Unseen Wavelengths Both Unseen

in Train Set PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑

128 20.550 0.730 0.294 20.315 0.726 0.297 N/A N/A N/A N/A
64 20.947 0.735 0.461 20.701 0.732 0.459 20.979 0.736 20.732 0.733
32 20.760 0.734 0.469 20.512 0.731 0.468 20.773 0.734 20.527 0.732
16 19.868 0.727 0.477 19.705 0.725 0.474 19.854 0.728 19.690 0.726

Table 3 and Fig. 7 illustrate that the same network archi-
tecture can incorporate arbitrary wavelength supervision:
increasing or decreasing the number of wavelengths used
during training has a minimal effect on evaluation accuracy.
From this we can deduce that continuous representations of
radiance spectra can successfully allow generalizing NeRF
to arbitrary wavelengths.

6.2. Simulating Imaging Sensors

HS-NeRF can also characterize and simulate different im-
age sensors from a single photo of the imaged scene. Since
camera image sensors each have a particular spectral re-
sponse, the recorded RGB intensities are given by integrat-
ing (over all wavelengths) the product of the light spectrum
reaching the sensor and the sensor’s response curve. HS-
NeRF can compute the light spectrum reaching the sensor
at each pixel which enables both characterization and sim-
ulation.

To characterize the image sensor, we first localize the
query photo’s camera pose in the scene using COLMAP.
We then render a hyperspectral image from the HS-NeRF.
Finally, we solve for the spectral response by minimizing:

[
r̄(λ) ḡ(λ) b̄(λ)

]
= argmin

X

∑
i,j

(RGBij −X ·HSij)
2

(4)

where X ∈ R3×128; RGBij ∈ R3 and HSij ∈ R128 de-
note the ijth pixel of the photo and hyperspectral render,
respectively; and r̄, ḡ, b̄ denote 128x1 vector parametriza-
tions of the image sensor’s spectral response, assuming each
pixel has the same spectral response. To simulate an image
sensor, we simply apply the response: RGBsimulated,ij =[
r̄(λ) ḡ(λ) b̄(λ)

]
·HSij . Figure 8 shows an example sim-

ulated photo alongside the real photo.

Figure 8. A demonstration of image sensor simulation
(Anacampseros top, Caladium bottom). Left: A photo taken with
a smartphone (a crop from Fig. 4). Right: The simulated photo
computed from the HS-NeRF.

7. Conclusions and Future Works
In this work, we showed that NeRFs can naturally extend
to hyperspectral imagery. We collected a dataset, described
the special considerations needed to handle hyperspectral
data, and presented and evaluated a novel algorithm for cre-
ating NeRFs with continuous wavelength representations.

We also demonstrated sample applications of hyperspec-
tral NeRFs, including hyperspectral super-resolution and
imaging sensor simulation. Future works include improved
performance via architectural and process improvements
and application of HS-NeRFs to non-destructively estimate
material compositions.
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Hyperspectral Neural Radiance Fields

Supplementary Material

Qualitative Results Website

Please also refer to https://hyperspectral-
nerf . github . io / supplemental - results -
webpage for qualitative results.

A. Introduction to Supplementary Material
In this work, we demonstrated that Neural Radiance Fields
(NeRFs) can be naturally extended to hyperspectral data
and are a well-suited tool for hyperspectral 3D reconstruc-
tion. The implementation details provided in this supple-
mental document describe our simple approach to hyper-
spectral NeRF, but we anticipate future works by the com-
munity will improve upon our baseline implementation us-
ing our to-be-published dataset, future larger datasets, ad-
ditional architecture and hyperparameter tuning, and recent
advances in NeRFs.

Our full code and dataset will be made publicly available
for the camera ready version.

B. Camera Pose Canonicalization
To tightly bound the scene to the objects of interest, we
canonicalize the camera poses as shown in Fig. 9 and com-
pute a bounding box centered at the origin whose size is
determined by the camera’s field of view. This improves
training stability and performance.

Scene Bounds

Camera FOV

Figure 9. To tightly bound the scene to the objects of interest, we
canonicalize the camera poses as shown and compute a bounding
box centered at the origin whose size is determined by the cam-
era’s field of view.

C. Implementation Details

We build upon nerfstudio’s nerfacto implementation, from
commit ef9e00e. Our code will be made publicly available
for the camera ready paper. The original nerfacto pipeline
and field are shown in Figs. 10 and 11 respectively.

As briefly summarized in the main paper, we make rela-
tively minimal modifications to the pipeline and field. Us-
ing the notation from Section 5.4: Ablations, C1 only
changes the rightmost MLP in Fig. 11 to output 128 chan-
nels in the last layer instead of 3; C2 changes the positional
hash encoding (ϕ in Fig. 11) to take 4 inputs instead of 3
(appending λ) and changes the rightmost MLP to only have
1 output for c instead of (r, g, b); and C is shown in Fig. 2
(bottom) of the main paper. For C, the sinusoidal encoding
for λ is taken to have 8 terms (tested 2, 4, 8, 16 terms, with
8 performing marginally better than 4 and 16, and 2 signifi-
cantly worse). Also for C, the component C(λ; ΘC) MLP
from Fig. 2 of the main paper was taken to be identical to
the rightmost MLP in Fig. 11 except with the appropriate
additional number of inputs to accommodate concatenating
the sinusoidally encoded wavelength, and with only 1 out-
put for c instead of 3 for (r, g, b). The latent vector ΘC was
taken to be the same size as in the nerfacto implementa-
tion (15-dim), with increasing the size to 32 and 64 showing

Figure 10. The original nerfacto pipeline (from nerfstudio docs)
contains a proposal sampler, which is analagous to the “coarse”
field from the original NeRF paper [21], and a “Nerfacto Field”,
which is analagous to the primary network from the original NeRF
paper (FΘ).

Figure 11. The original nerfacto field (from nerfstudio docs) is
very similar to the original NeRF paper [21], but includes appear-
ance embeddings [19] and uses slightly different encodings for the
position and direction. This figure is reproduced in Fig. 2 of our
main paper.

https://hyperspectral-nerf.github.io/supplemental-results-webpage
https://hyperspectral-nerf.github.io/supplemental-results-webpage
https://hyperspectral-nerf.github.io/supplemental-results-webpage
https://github.com/nerfstudio-project/nerfstudio/commit/ef9e00e6141d2fde83fc344b3e27ac475a8597cd
https://docs.nerf.studio/en/latest/nerfology/methods/nerfacto.html
https://docs.nerf.studio/en/latest/nerfology/methods/nerfacto.html


negligible performance improvement but increased training
instability.

Similarly, σ0 is the stock nerfacto field (scalar); σ1 only
changes the left MLP in Fig. 11 to have 128 outputs; σ2

changes the positional hash encoding to take 4 inputs, and σ
is as shown in Fig. 2 (bottom) of the main paper. The addi-
tional component σ(λ; ΘC) MLP has 3 layers with 64-dim
hidden layers and ReLU activations. The sinusoidally en-
coded λ is shared with C and the latent Θσ vector is shared
with (identical to) the ΘC vector.

Finally, P0 is the stock nerfacto proposal network while
Pλ augments the proposal network with the wavelength.
For Pλ, the position is first run through a hash encoding
and MLP as in P0, except the MLP outputs a latent vec-
tor of dimension 7 instead of a scalar density. This latent
vector is concatenated with a 2-term sinusoidally encoded
wavelength and fed through a 2-layer network with 7-dim
hidden layer to output a scalar density for inverse transform
ray sampling. Like the original nerfacto pipeline, this sam-
pling step occurs twice with identical architecture (but dif-
ferent weights) proposal networks.

Reiterating our implementation, our primary HS-NeRF
implementation uses C(λ; ΘC), σ0(λ; Θσ), and P0, which
we find to produce good results while also enabling wave-
length interpolation.

C.1. RGB Implementations

Pseudo-RGB wavelengths. For the purposes of generat-
ing pseudo-RGB images, on the Surface Optics datasets we
use the wavelengths 622nm, 555nm, and 503nm for R, G,
and B channels respectively.

For the BaySpec datasets, we use a slightly more in-
volved approach. We found that the BaySpec datasets were
more sensitive to noise saturation and white balance, so
we use an approach similar to that described in Section
6.2 of the main paper to generate pseudo-RGB images.
Specifically, we first manually identify 5-10 point corre-
spondences between a hyperspectral image and an iPhone
photo of the same scene to represent pairs of colors that
should be the same. Expressing the n points in the hyper-
spectral image as X ∈ R128×n and in the iPhone photo
as Y ∈ R3×n, we solve for a linear transformation A ∈
R3×128 = argminA′ ∥Y −A′X∥2 using the least squares
solution. We then use this transformation to convert the hy-
perspectral image to pseudo-RGB. After using this initial
approach to boot-strap certain components of the pipeline,
we later apply the method described in Section 6.2 to gen-
erate pseudo-RGB renderings.

HS-NeRF RGB variation implementations. For the
purposes of making a quantitative comparison to standard
RGB NeRF, Section 5.2 and Table 1 of the main paper
present variations of our approach applied to just 3-channel

(RGB) images instead of the full 128-channel hyperspectral
data. As described in the caption of Table 1, “Ours-Cont”
refers to our HS-NeRF implementation but trained on only
3 wavelengths (so we maintain a continuous representation
for radiance spectra, but have very weak supervision of only
3 channels), “Ours-RGB” refers to C1, σ1, P0 with 3 out-
put channels for both C1 and σ1, and “Ours-Hyper” refers
to our HS-NeRF implementation trained on all 128 wave-
lengths. In the table for Ours-Hyper, PSNR and SSIM are
evaluated over all 128 wavelengths while LPIPS is evalu-
ated on the RGB images obtained using the Pseudo-RGB
procedure.

D. Training Details
All networks were trained for 25000 steps, with 4096 train
rays per step using the Adam optimizer. The proposal net-
works and field both used lr=1e-2, eps=1e-15, and an expo-
nential decay lr schedule to 1e-4 after 20000 steps. Camera
extrinsic and intrinsic optimization were both turned off,
since evaluation metrics are skewed if camera parameters
are modified. To accommodate imperfect camera poses, af-
ter COLMAP, stock nerfacto was run on Pseudo-RGB im-
ages for 100000 steps with camera optimization turned on
and the resulting camera pose corrections were saved and
used in subsequent tests. The Surface Optics datasets took
roughly 20 minutes to train HS-NeRF while the BaySpec
datasets took roughly 40 minutes to train on an RTX 3090
due to the need to re-cache a new set of 32 images every 50
steps (see next paragraph). Most architectures required sim-
ilar training times, with the exception of the last two rows
of the ablation: C2σ2P0 and CσPλ took at roughly three
times as long.

For the Surface Optics datasets, of the 48 images per im-
age set, 43 were used for training and 5 withheld for evalu-
ation. Each step, the 4096 training rays were sampled ran-
domly from all 43 training images, except for row 6 of the
ablations where the training rays were sampled from only
10 of the 43 training images each step, with the choice of
10 images being re-sampled every 50 steps. The BaySpec
datasets were too large to fit in VRAM so rays were sam-
pled from 32 images every step, with the set of 32 images
being re-sampled every 50 steps, with row 6 of the ablations
being reduced to 12 images resampled every 50 steps.

In some approaches, not all wavelengths could be run for
every step due to VRAM limits so a subset of wavelengths
were sampled (randomly) for each step, but every sampled
wavelength was run for every ray in the step. For rows 1
and 2 of the ablations, every wavelength could be run every
step. For rows 3, 4 (HS-NeRF, ours), and 5, the number
of wavelengths sampled per step were 8, 12, and 6, respec-
tively.

For evaluation, every wavelength of every pixel of the 5
(Surface Optics) or 35 (BaySpec) evaluation images were
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Loss Curves for Pseudo-RGB NeRF

Figure 12. Loss curves for RGB NeRF correspond to the metrics
from Table 1 in the main paper. Most scenes have converged by
25000 steps except the Tools scene which appears to have diffi-
culty converging for all methods except “Ours-Cont”
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Loss Curves for Different Network Architectures (Ablations)

Figure 13. Loss curves for ablation testing (analagous to Table
3 in the main paper) shows that while the rosemary and basil
scenes optimize well, the tools scene does not converge partic-
ularly well for any method, re-emphasizing the suspected pre-
processing (COLMAP) inaccuracy.
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Figure 14. Loss curves for HS-NeRF trained with a subset of
wavelengths (analogous to Table 2 in the main paper) shows that
even training with only 1 out of every 8 wavelengths still has al-
most identical convergence rate w.r.t. number of steps.

evaluated and compared for each scene.

D.1. Commentary on the Tools Scene

The Tools scene experienced instabilities during training
with several approaches including both HS-NeRF (ours)
and nerfacto (RGB baseline). We anticipate that obtaining
better camera intrinsics and extrinsics may correct this is-
sue, since (a) every method had difficulty on this scene and
(b) enabling camera pose optimization during NeRF train-
ing improved convergence for all methods. Better camera
intrinsics could be obtained by initializing COLMAP with
the intrinsics obtained from other scenes, and better camera
extrinsics could be obtained through a combination of tun-
ing COLMAP parameters, utilizing turntable priors, and a
longer NeRF-based camera pose refinement as described in
Appendix D. The poor convergence on the Tools scene for
all methods is illustrated in both Fig. 12 (green curves) and
Fig. 13.

D.2. Loss Curves

To demonstrate that all methods were fairly trained until
convergence, the loss curves corresponding to some met-
rics given in the main paper are shown. As mentioned,
the Tools scene appears to have difficulty converging for
all methods including baseline nerfacto, suggesting possi-
ble pre-processing (COLMAP) inaccuracy. This is evident
both in the green curves of Fig. 12 and in the rightmost plot
of Fig. 13. Evidencing the hyperspectral super-resolution
(spectral interpolation) application, Fig. 14 shows almost
identical training loss for all subsets of wavelengths trained
with.

E. Qualitative Example Results
A selection of example images and videos with brief ex-
planations are provided at https://hyperspectral-
nerf . github . io / supplemental - results -
webpage to better gauge our results qualitatively.

https://hyperspectral-nerf.github.io/supplemental-results-webpage
https://hyperspectral-nerf.github.io/supplemental-results-webpage
https://hyperspectral-nerf.github.io/supplemental-results-webpage

	Introduction
	Related Works
	HS-NeRF
	Color Radiance Spectrum Prediction
	Color Transmittance Spectrum Prediction
	Wavelength-dependent Proposal Network

	Dataset and Preprocessing
	Data Collection Setups
	Image Acquisition and Preprocessing
	Computing Camera Poses and Scene Bounds
	Dataset Scenes

	Experiments and Discussion
	Evaluation Metrics
	RGB
	Ablations

	Example Applications
	Hyperspectral Super-Resolution
	Simulating Imaging Sensors

	Conclusions and Future Works
	Introduction to Supplementary Material
	Camera Pose Canonicalization
	Implementation Details
	RGB Implementations

	Training Details
	Commentary on the Tools Scene
	Loss Curves

	Qualitative Example Results

