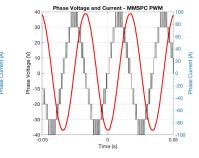
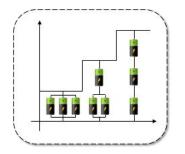
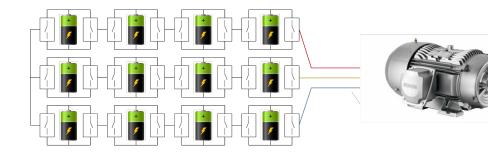

An Electric Vehicle with Novel Powertrain


Gerry Chen

Overview

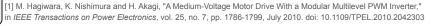
- BLDC motors are the most common type used in electric vehicle propulsion
- Motor control requires sinusoidal voltage to produce sinusoidal current
- SoA: Field Oriented Control (FOC) using PWM
- Our contribution: modular battery system to create smoother sinusoidal waveforms

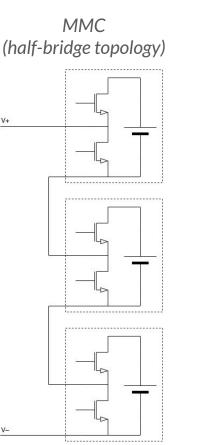


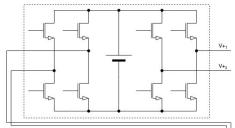

-20

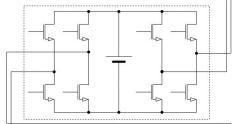
0.05

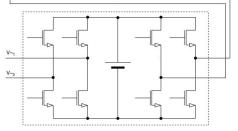
Modular Multilevel Series-Parallel Converter (MMSPC)


- Dynamically reconfigure battery modules in series or in parallel
- Reduces switching losses, noise, and stress
- Modularity facilitates assembly and repair while reducing cost

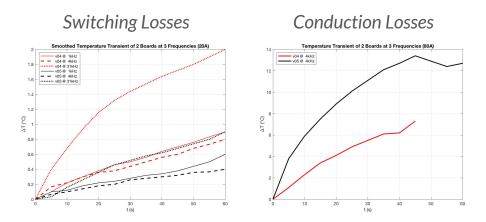


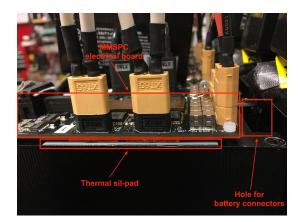

MMSPC (cont)


- Limited work done on modular (non-parallel) battery systems (MMC) for AC motor control [1]
- MMSPC enables modules to be connected in parallel:
 - Sensorless balancing
 - Equivalent semiconductor area as comparable MMC topology (full bridge)



MMSPC (ours)

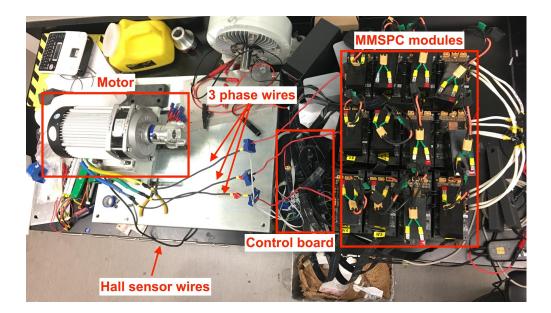



MOSFET Selection and Thermal Considerations

- Modeling MOSFET switching losses can be difficult use thermal analysis to compare losses
- Compare two MOSFETs: higher R_{DS,on} vs higher C_g to view relative importance of switching losses
- Switching losses account for approximately 13% of losses
- MOSFET case only ~11°C above ambient @ 80A

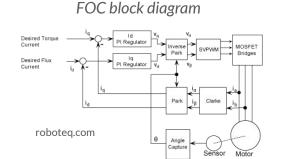
MMSPC Module Mechanical Design

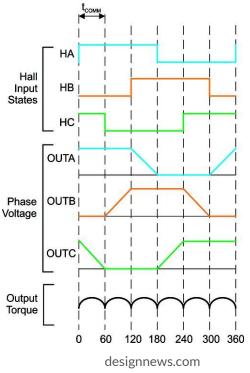
- Module must:
 - Be sturdy and vibration resistant
 - Hold batteries and board
 - Be easy to mount and unmount
 - Dissipate battery and board heat
- Extruded aluminum boxes chosen
- Slots CNC milled to accommodate wiring to batteries
- Electronics board mounted with screws and sil-pad



Motor Control

System Setup


- NI sbRIO-9627 control board + custom motherboard
- BM1424ZXF-2.2KW72V motor
- 12 MMSPC modules

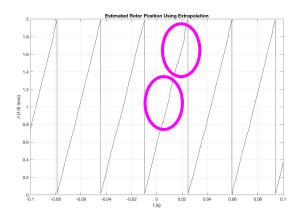


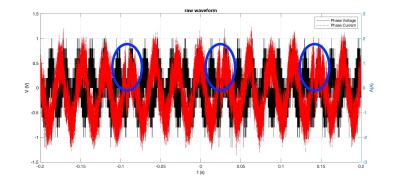
Motor Control - Introduction

- Control schemes:
 - Trapezoidal control (easiest, standard in low power applications)
 - Sinusoidal control
 - Field Oriented Control (FOC) (Industrial/Automotive standard)
 - FOC requires continuous rotor angle estimation
- Sensor types:
 - Sensorless (back-emf)
 - Hall Sensors
 - Encoder
 - Resolver



Trapezoidal waveforms




Rotor Angle Estimation

- Hall sensors have many advantages:
 - Reliable
 - Inexpensive
 - Ubiquitous
 - Simple control
- Downside: only provide 60° resolution - must extrapolate rotor position

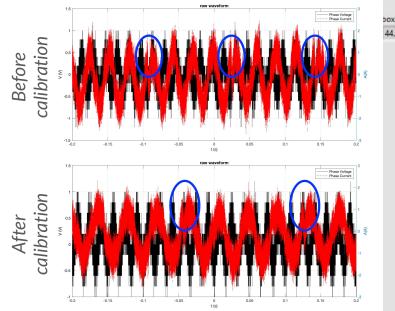
instructables.com

Problem: susceptible to sensor misalignment

Rotor Angle Estimation (cont)

First approach: Oth order Taylor extrapolation

$$\hat{\theta}(t) = \theta_i + (t - t_i) \frac{\theta_i - \theta_{i-1}}{t_i - t_{i-1}}$$


Intro

Rotor Angle Estimation (cont)

Refinement: Hall sensor misalignment calibration

Idea: store measured locations of hall sensors during open-loop control

Result: minor improvements

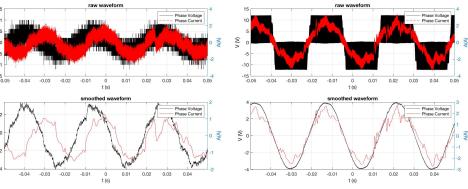
Intro

Rotor Angle Estimation (cont)

New approach: Phase Locked Loop (PLL) on rotor angle

$$\hat{\theta}_j = \hat{\theta}_{j-1} + (t_j - t_{j-1}) \left(\frac{\theta_i - \theta_{i-1}}{t_i - t_{i-1}} + u \right)$$
$$u = K(\theta_i - \hat{\theta}_i)$$

Idea: guarantees continuous position + velocity

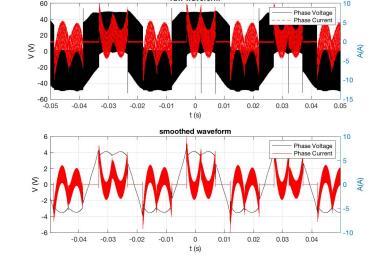


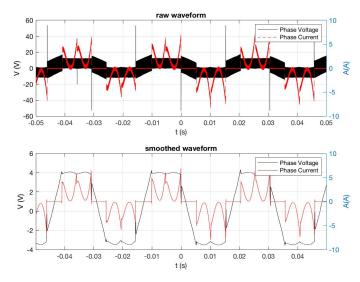
ε

S

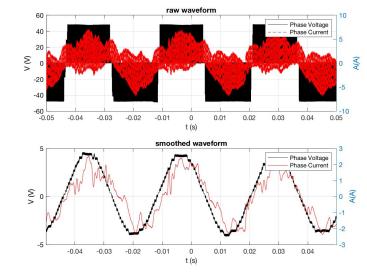
-0.4

PLL after calibration

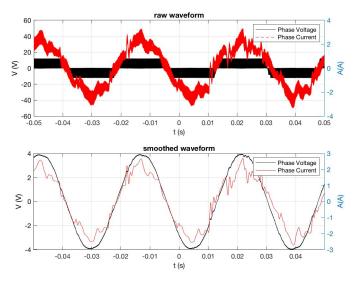

Asser


MMSPC: Trapezoidal (control)

Without MMSPC


raw waveform

With MMSPC



MMSPC: FOC - Extrapolated Rotor Angle

Without MMSPC

With MMSPC

Assen

-2

-0.04

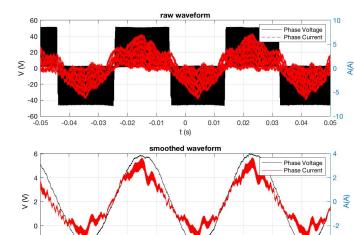
-0.03

-0.02

-0.01

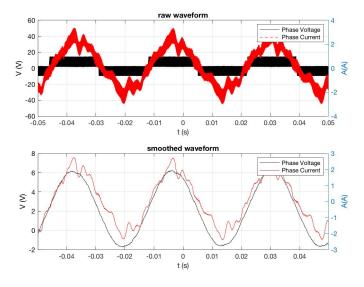
0

t (s)


0.01

0.02

0.03


0.04

MMSPC: FOC - PLL Rotor Angle

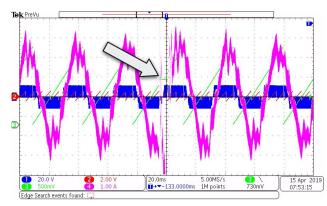
Without MMSPC

With MMSPC

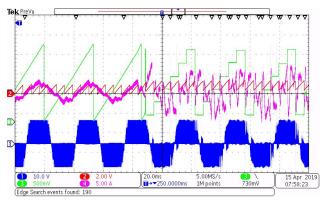
Motor Control: Comparison

- MMSPC outperforms traditional PWM in every control scheme and both metrics
- FOC outperforms trapezoidal in both metrics and PWM schemes
- **PLL** *outperforms* Oth order Taylor extrapolation in both metrics and PWM schemes

Table 1: MMSPC Motor Control Comparison


$\operatorname{Control}$	Trapezoidal		FOC extrapolation		FOC PLL	
\mathbf{Scheme}	MMSPC	${ m traditional}$	MMSPC	traditional	MMSPC	${ m traditional}$
Average Current (Arms)	2.170	2.438	1.587	2.165	1.495^{*}	2.305
Noise (Arms)	2.412	2.964	0.995	2.086	0.941*	2.086

ltro


Motor Control: Fallback to trapezoidal

Hall sensors can revert to trapezoidal control in the event of total software failure or when PLL loses lock

Momentary PLL loss

Conclusions

- An MMSPC system for motor control was constructed with sufficient heat dissipation and structural integrity.
- Continuous rotor angle estimation can be successfully achieved with a PLL and misalignment calibration.
- MMSPC modulation is superior to traditional PWM for every control scheme when comparing current consumption and noise.
- FOC PLL fallback to trapezoidal control was demonstrated to maintain safe, stable control of the motor.

Next Steps

- Install the system on a dune-buggy to stress-test in real-world conditions
- Perform rigorous analyses of:
 - Power consumption
 - Power factor
 - Auditory noise
 - Torque ripple
 - Battery stress
 - Battery balancing

Thank you. Questions?

