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Abstract— We propose a manifold optimization approach
for solving constrained inference and planning problems. The
approach employs a framework that transforms an arbitrary
nonlinear equality constrained optimization problem into an
unconstrained manifold optimization problem. The core of
the transformation process is the formulation of constraint
manifolds that represent sets of variables subject to equality
constraints. We propose various approaches to define the tan-
gent spaces and retraction operations of constraint manifolds,
which are crucial for manifold optimization. We evaluate
our constraint manifold optimization approach on multiple
constrained inference and planning problems, and show that
it generates strictly feasible results with increased efficiency as
compared to state-of-the-art constrained optimization methods.

I. INTRODUCTION

Many important problems in robotics involve constraints.
In robot kinematics, each joint constrains the poses of its
connected links [1] and contact surfaces are constrained
to have zero distance at each contact point [2]. In state
estimation and planning, the kinodynamics constraints need
to be satisfied for all time steps [3], [4]. In trajectory
planning, the robot needs to obey system dynamics and
pass through predefined way-points or reach certain footstep
locations [5]. In robot swarm applications, distances among
the robots are also frequently enforced as constraints [6].

A lot of prior work has focused on tackling inference
and planning problems with constraints. E.g., [7] proposes
representing an inference problem with equality constraints
as a constrained factor graph, [8] solves a constrained factor
graph with the sequential quadratic programming (SQP)
method, [9] utilizes a variable elimination strategy to solve
an equality constrained linear quadratic regulator control
problem, and [10] applies the Lagrangian multipliers method
to solve a constrained SLAM problem.

State-of-the-art constrained optimization methods still face
several issues in solving large-scale constrained optimiza-
tion problems. The penalty method and the augmented
Lagrangian method [11], [12] require iteratively solving
unconstrained optimization problems, and can lead to prob-
lems with bad numerical properties. For SQP methods [13],
finding a merit function that balances the dual objectives of
reducing costs and satisfying constraints is nontrivial.

A powerful alternative to the constrained optimization
methods is manifold optimization. It has several advantages,
including lower complexity and better numerical proper-
ties [14]. The transformation from a constrained optimization

1College of Computing, Georgia Institute of Technology, Atlanta,
USA {yetong, fan.jiang, gerry, varunagrawal,
fd27}@gatech.edu

2Munitions Directorate, Air Force Research Laboratory, Eglin AFB, USA
adam.rutkowski@us.af.mil

problem into an unconstrained optimization problem elimi-
nates equality constraints by defining manifold variables that
represent the set of feasible assignments.

However, the transformation process from an equality
constrained optimization problem into an unconstrained man-
ifold optimization problem is not always available in cases
with arbitrary constraints, since defining manifold variables
requires expert knowledge, especially for large-scale, densely
connected constraints. The tangent spaces and retraction
operations on such manifolds need to be manually specified
to perform manifold optimization, e.g., in [6], [15]–[18].

We aim to develop a general framework that transforms an
arbitrary nonlinear equality constrained optimization prob-
lem into an unconstrained manifold optimization problem
without prior knowledge of the constraints and manifolds.
First, we define a constraint manifold that represents vari-
ables connected by equality constraints, enforcing that those
constraints are always satisfied. The concept of a constraint
manifold was first proposed in [19], and it has recently
been applied to reinforcement learning and sampling [20],
[21]. Then, we formulate the tangent space and retraction
operations of a constraint manifold, which are derived di-
rectly from the constraints. Finally, we replace each set of
constrained variables in the constrained optimization prob-
lem with a corresponding constraint manifold variable, and
construct the equivalent cost on the new variables.

We evaluate our manifold optimization approach against
state-of-the-art constrained optimization methods in six con-
strained inference and planning scenarios. We further im-
prove the efficiency of the manifold optimization approach
by exploring different ways to compute the tangent spaces
and perform retractions on the constraint manifolds. We
show that our manifold optimization approach outperforms
the state-of-the-art constrained optimization methods in both
efficiency and optimality in these scenarios.

Our contributions can be summarized as follows:

‚ Develop a general framework that transforms an equal-
ity constrained optimization problem into an uncon-
strained manifold optimization problem.

‚ Formulate constraint manifolds that represent variables
subject to arbitrary equality constraints, and provide
multiple methods to compute tangent spaces and per-
form retraction operations on constraint manifolds.

‚ Evaluate our constraint manifold optimization approach
on multiple constrained inference and planning prob-
lems and show its advantages in efficiency and opti-
mality compared to existing state-of-the-art methods.



II. PRELIMINARIES

First, we review some manifold related definitions and
properties, which are crucial for defining and applying con-
straint manifolds. More detailed explanations are available
in Boumal et al. [22] and Absil et al. [14].

Manifold: An n-dimensional manifold is a set M which
is locally homeomorphic to Rn.

Tangent Space & Tangent Vector: Let x be a point on
manifold M. We consider the set, Cx, of smooth curves cptq
passing through x at t “ 0 (1). Two curves are equivalent
c1 „ c2 if they pass x with the same velocity. A tangent
vector v to M at x P M is defined as a class of equivalent
curves (2), and the tangent space, TxM, is defined as the set
of all equivalent classes (3) [22]. As the tangent space is a
linear space, we can define its basis as BxM “ pb1, . . . , bnq,
a horizontal concatenation of basis tangent vectors, and any
tangent vector can be expressed as a linear combination of
the basis (4), with ξ P Rn.

Cx “tc|c : I Ñ M is smooth, cp0q “ xu (1)
v “rcs “ tc̃ P Cx : c „ c̃u (2)

TxM “trcs : c P Cxu (3)

v “

n
ÿ

i“1

ξibi “ BxM ¨ ξ (4)

Differential on Manifolds: The differential of a smooth
map F : M Ñ M from manifold M to manifold M, is
a linear operator DF pxq : TxM Ñ TF pxqM that maps
a tangent vector v “ rt Ñ pcptqqs of manifold M to the
tangent vector v “ rt Ñ F pcptqqs of manifold M (5) [22] .
Equipped with the tangent space bases BxM, BF pxqM, we
can write the differential in matrix form (6), where Jf pxq

is the Jacobian matrix, and ξ, ξ represent the corresponding
basis decompositions, i.e., v “ BF pxqM ¨ ξ, v “ BxM ¨ ξ.

DF pxqrvs “v (5)

JF pxq ¨ ξ “ξ (6)

Retraction: A retraction on manifold M at a point x P M
is a smooth map Rx : TxM Ñ M such that the zero tangent
vector maps to x, and its differential at the zero tangent
vector is the identity map (7) [22].

Rxp0q “x (7a)
DRxp0qrvs “v (7b)

Embedded Submanifold: A subset M of a manifold M
is an embedded submanifold of M if and only if for some
fixed integer k ě 1 and for each point x P M, there exists a
neighborhood U of x in M and a smooth function h : U Ñ

Rk such that (8) holds. Furthermore, the dimension of M is
given by (9), and the tangent space of M is a subspace of
TxM given by (10) [22].

h´1p0q “M X U (8a)
rankDhpxq “k (8b)

dimM “dimM ´ k (9)

TxM “ kerDhpxq Ď TxM (10)

III. PROBLEM FORMULATION

We consider the general nonlinear equality constrained
optimization problem (11) with p variables, m cost terms,
and n constraints. Each variable xk P Mk is a manifold
variable, e.g., a 3D pose variable on the SEp3q manifold.
The set of all variables is represented by X “ px1, ¨ ¨ ¨ , xpq,
which belongs to the product manifold of all individual
manifolds M “ M1 ˆ . . . ˆ Mp. The cost function (11a)
is a sum of the m cost terms. Each cost term fipX

f
i q is a

function on a subset of variables X f
i “ txkukPIf

i
, and each

constraint is an equality (11b) involving a subset of variables
Xh

j “ txkukPIh
j

, where If
i and Ih

j represent the index set
of variables involved in the ith cost term and jth constraint,
respectively. We assume that all cost functions fipX

f
i q and

constraint functions hjpXh
j q are C1 differentiable.

argmin
XPM

m
ÿ

i“1

fipX
f
i q (11a)

s.t. hjpXh
j q “ 0 for j “ 1, . . . , n (11b)

We use a factor graph [23], [24] to represent an equality
constrained optimization problem (11) (Fig. 1a). Each vari-
able xk is represented as a variable node. Each cost term
fipX

f
i q and each constraint hjpXh

j q “ 0 is represented by a
factor node connected to its respective variables X f

i or Xh
j

involved in the cost or constraint.

cost !
constraint ℎ
original variable #

Constraint-connected component $
Constraint manifold variable %

(a) (b)

Fig. 1. (a) Factor graph representation of an equality constrained opti-
mization problem; the constraint-connected components (CCC) are marked
with dotted ellipses. (b) Factor graph representation of the transformed
unconstrained manifold optimization problem. Notice that each CCC is
replaced by a constraint manifold variable, and cost factors on constrained
variables are replaced with ones on constraint manifold variables.

A. Problem Transformation

Our goal is to formulate the original equality constrained
optimization problem as an unconstrained manifold opti-
mization problem. By analyzing the graph connectivity, we
can identify sets of variables connected by constraint factors.
We define the tuple of a set of such variables and the
constraints among them as a constraint-connected component
(CCC), represented by Cc “ pXC

c , HcpXC
c q “ 0q, where c

is the index for the CCC, XC
c “ txkukPIC

c
is the set of

variables in the CCC with the variable index set IC
c , and

HcpXC
c q “ thjpXh

j quIh
j ĎIC

c
“ 0 is the vertical concatenation

of constraints that only involve variables in the CCC.



Each constraint-connected component Cc is then replaced
by a constraint manifold variable θc P Mc. The constraint
manifold Mc is a subset of the product manifold ĂMc (12),
and it represents the feasible values of XC

c (13). A recovery
function rk : Mc Ñ Mk (14) is defined that recovers
the value of any original variable xk in the CCC from
the constraint manifold variable θc. After the replacement
of constrained variables, the new variables Θ include the
unconstrained variables and constraint manifold variables,
and we denote the domain of the new problem as M.

ĂMc “
ą

kPIC
c

Mk (12)

Mc “tXC
c P ĂMc : HcpXC

c q “ 0u (13)
rkpθcq “xk (14)

Each cost factor fipX
f
i q of the original problem that

involves constrained variables needs to be updated as an
equivalent factor f ipΘ

f
iq (15a) on the new variables, where

Θf
i represents the set of new variables involved in the new

cost factor. The new factor is created by substituting each
constrained variable xk with its corresponding recovery func-
tion (15b), while the unconstrained variables are unchanged.

f ipΘ
f
iq “fipX

f
i q (15a)

X f
i “trkpθcqukPIf

i
(15b)

The result is an unconstrained manifold optimization prob-
lem (16), with its corresponding factor graph representation
shown in Fig. 1b. To run manifold optimization on the
transformed problem, we still need to define the tangent
spaces and retraction operations of the constraint manifolds.

argmin
ΘPM

m
ÿ

i“1

f ipΘ
f
iq (16)

IV. CONSTRAINT MANIFOLD

The constraint manifold Mc defined on a constraint-
connected component Cc is a sub-manifold of the product
manifold ĂMc (12), assuming the Jacobian matrix of con-
straints JHc

pXC
c q is always full rank. Though the assumption

holds true in most cases, certain rank deficient cases may
exist which we leave for future study. We will then use
the submanifold properties to derive the tangent spaces and
retraction operations for the constraint manifolds.

A. Tangent Space

We first compute the tangent space of the product manifold
ĂMc, then derive the tangent space of the constraint manifold
as its subspace. The tangent space of the product manifold
ĂMc at XC

c P ĂMc is the product space of the tangent space
on each original manifold Txk

Mk (17). The basis of the
tangent space BXC

c

ĂMc is formed by concatenating the basis
of each original manifold Bxk

Mk (18).

TXC
c

ĂMc “
ą

kPIC
c

Txk
Mk (17)

BXC
c

ĂMc “tBxk
MkukPIC

c
(18)

The tangent space of the constraint manifold Mc can be
found using the submanifold properties (10). At a point on
the constraint manifold θc P Mc, the tangent space TθcMc

is the kernel space of the constraint function differential (19),
where XC

c represents the equivalent original variables to θc.
A basis of the tangent space can be found by computing the
null space of the constraint Jacobian matrix JHc

pXC
c q as in

(20), with the matrix N “ Nul JHcpXC
c q denoting the null

space basis of the constraint Jacobian.

TθcMc “ kerDHcpXC
c q

“tv P TXC
c

ĂMc : DHcpXC
c qrvs “ 0u

“tBXC
c

ĂMc ¨ ξ : JHc
pXC

c q ¨ ξ “ 0u (19)

BθcMc “BXC
c

ĂMc ¨ N (20)

B. Retraction

The retraction on the product manifold ĂMc can be formu-
lated as performing retraction on each individual manifold
Mk with their corresponding tangent vector component vk
(21). We then provide three ways to perform retraction on
the constraint manifold Mc.

RXC
c

pvq “tRxk
pvkqukPIC

c
(21)

1) Metric Projection: A common way to define retraction
is the metric projection [22]. We first perform retraction
on the product manifold RXC

c
pvq, then project the point

onto the constraint manifold Mc using metric projection
as formulated in (22), where distp¨, ¨qM is the Riemannian
distance between any two points on the manifold M. Notice
that (22) is itself a constrained optimization problem, and
can be almost as hard to solve as the original constrained
optimization problem (11) in certain cases.

Rθcpvq “ argmin
Y P ĂMc

distpY,RXC
c

pvqq2
ĂMc

s.t. HcpY q “ 0 (22)

2) Approximate Metric Projection: in practice, inspired
by [25], we can solve an unconstrained optimization problem
(23) instead, which minimizes the sum-of-squares of the
constraint violations with the Levenberg-Marquardt method.
Initial values for unconstrained optimization are chosen as
the retraction on the product manifold RXC

c
pvq.

Rθcpvq “ argmin
Y P ĂMc

}HcpY q}2 (23a)

Yinit “ RXC
c

pvq (23b)

3) Retract Basis Variables: We select a set of variables
XB

c “ txkukPIB
c

with variable indices IB
c as the basis vari-

ables, such that dimXB
c “ dimMc. The tangent vector is

used to retract the basis variables, and the rest of the variables
are matched to satisfy the constraints. The retraction solves
the unconstrained optimization in (24).

Rθcpvq “ argmin
Y P ĂMc

ÿ

kPIB
c

distpyk,Rxk
pvkqq2Mk

` }HcpY q}2 (24)



V. OPTIMIZATION ON CONSTRAINT MANIFOLDS

A. Gradient of the New Cost Function

To solve the manifold optimization problem (16), we need
to differentiate the new cost functions f ipΘ

f
iq. The Jacobian

of the new cost function (26) can be found by applying the
chain rule on (15). The Jacobian of recover function is given
in (25), where Sk is the selection matrix that selects the rows
in the null space matrix N corresponding to variable xk.

Jrkpθcq “Sk ¨ N (25)

Jf pθcq “
ÿ

kPIC
c XIf

i

Jrkpθcq ¨ Jf pxkq (26)

B. Infeasible Methods

The efficiency of manifold optimization can be further im-
proved by developing an “infeasible method”. We notice that
the retraction operation on each constraint manifold requires
solving an optimization problem, which may take several
iterations to converge to a solution that strictly satisfies
the constraints. We draw intuition from [25] that “manifold
optimization” can still converge without performing the exact
retraction. In our infeasible method, the retraction optimiza-
tion (23, 24) is stopped before convergence, generating some
infeasible values pθc R Mc, which are on a different manifold
pθc P xMc as defined in (27). Notice that the approximate
manifold xMc is also a constraint manifold, while it differs
from Mc in the constant terms of the constraint equations.
The linear update is computed as a tangent vector on the
approximate manifold xMc instead. The retraction, however,
will still try to retract onto the constraint manifold Mc, i.e.,
forcing HcpXC

c q “ 0 instead of HcpXC
c q ´ Hcppθcq “ 0,

to ensure convergence. A visual example of the infeasible
manifold optimization method on the SOp2q manifold is
shown in Fig. 2.

xMc “tXC
c P ĂMc : HcpXC

c q ´ Hcppθcq “ 0u (27)
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Fig. 2. Example of infeasible optimization on the SOp2q manifold. The
constrained optimization problem minimizes the distance of a point to
the goal point, while staying on the unit circle (solid red circle). The
approximate manifolds at each iteration are represented by dashed red arcs.
Notice that the optimization converges to the true solution.

C. Relationship with Symbolic Variable Elimination

There is a connection between constraint manifold opti-
mization and symbolic variable elimination. For a constraint
manifold Mc with a set of basis variables XB

c , we can
construct its tangent space basis such that each basis vector
b P BθcMc corresponds to a tangent space basis vector
b P Bxk

Mk of a basis variable xk P XB
c . Therefore, we

are able to pick freely at the tangent spaces of the basis
variables, while the other dimensions of the tangent vector
v P TθcMc are chosen to satisfy the linearized constraints
DHcpXC

c qrvs “ 0. With the basis variable retraction, the
linear update is applied directly on the basis variables, while
the rest of the variables are chosen to satisfy the constraints
HcpXC

c q “ 0. In this way, the manifold optimization method
is equivalent to applying symbolic elimination that eliminates
all the non-basis variables in the CCC using the constraints.

VI. EXPERIMENTS & RESULTS

A. Scenarios

We conduct experiments on six robotic inference and
planning problems with equality constraints.

1) Multi-Vehicle Trajectory Estimation: We consider a
two-vehicle state estimation problem as in [26]. Two vehicles
collect odometry measurements and inter-vehicle measure-
ments while navigating through the environment. Two types
of inter-vehicle measurements are considered: (1) relative
pose measurements (“Connected Poses”) (2) range measure-
ments (“Range Constraint”). The inter-vehicle measurements
are precise, and therefore treated as constraints. The goal
is to find the maximum a posterior (MAP) estimate of the
trajectories that satisfy the inter-vehicle constraints. A factor
graph representation of the constrained optimization problem
is shown in Fig. 3.
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Fig. 3. Factor graph for multi-vehicle estimation problem. The poses of the
two vehicles at time step t are represented as variables at, bt, respectively.
Inter-vehicle constraints are enforced for each time step, while odometry
measurements are imposed across time steps.

2) Quadruped State Estimation: We consider a quadruped
state estimation problem on simulated trajectories as in [4].
The quadruped is equipped with IMU measurements on the
torso link, joint angle measurements with uncertainty of
1˝ at each joint, and contact measurements on each foot.
When contact happens, we assume the contact point is static
with small uncertainties that counts for slippery and rolling
contacts. We explicitly model as variables the link poses,
joint angles, contact points at each time step, and enforce
the kinematics constraints at each joint [1], and the relative
position constraints of the contact points with respect to the
foot links. The constrained MAP inference problem has a
factor graph representation in Fig. 4.
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Fig. 4. Simplified factor graph for the quadruped state estimation problem.
The joint angles, link poses, contact points at time step t are represented
by Qt, Pt, Ct, respectively. Joint measurements are imposed on the joint
variables at each step; integrated imu measurements are imposed on the torso
poses in consecutive time steps; contact invariant objectives are imposed on
contact points in consecutive time steps if contact happens.

3) Robot Kino-dynamic Planning: The kinodynamic tra-
jectory planning problems of (1) a cart-pole system, (2)
a cable-driven parallel robot [27], and (3) a quadruped
with contact are considered. The goal for the trajectory
planning problem is to find the trajectory that achieves a
final target state with minimum accumulated motor torques.
The target state for the cart-pole system is to rotate up the
pole and balance it, while the target states for the cable
robot and quadruped are the specified end-effector/torso
poses as shown in Figure 5a. The continuous trajectory
is represented using discrete time steps with Trapezoidal
collocation [28]. For each time step, we explicitly model as
variables the pose, twist, and acceleration of each link; the
angle, velocity, and acceleration of each joint; and the torque
and wrench on each joint. The constraints of the problems
include the kino-dynamic constraints as in [29], as well as the
constraints specifying the initial state. The costs include the
costs for achieving the final state, minimizing motor torque
actuations, and satisfying the collocation scheme. A factor
graph representation of the problem is shown in Figure 5b.

B. Performance Benchmark

We evaluate the constraint manifold optimization method
against state-of-the-art constrained optimization methods. As
a baseline, the soft constraint method treats constraints as
part of the cost function, and minimizes the merit function
(28) with a weighting coefficient µ “ 10000. We also im-
plement the penalty method and the augmented Lagrangian
method following [30] as baselines. We evaluated both
the feasible and infeasible methods for constraint manifold
optimization. In feasible methods, the retraction optimization
problem (23, 24) are optimized until convergence; in infea-
sible methods, the retraction optimization problem is only
executed with one Levenberg-Marquardt iteration. Approxi-
mate metric projection (23) is used as retraction for multi-
vehicle state estimation tasks, while all other scenarios uses
basis variable retraction (24). We employ the Levenberg-
Marquardt method for manifold optimization. All methods
are implemented using the GTSAM [31] library.

argmin
XPM

m
ÿ

i“1

fipX
f
i q ` µ

n
ÿ

j“1

}hjpXh
j q}2 (28)
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Fig. 5. (a) Initial state (red) and target final state (blue) for (1) cart-
pole system, (2) cable-driven parallel robot, (3) quadruped with contact. (b)
Simplified factor graph representation of the constrained optimization for
trajectory planning problem. The poses and angles, velocities, accelerations,
wrenches and torques at time step t are represented with Qt, Vt, At, Ft,
respectively. Kinodynamic constraints and min-torque costs are enforced for
each time step. Collocation is imposed across consecutive steps.

For all scenarios, we show the optimization problem size
(as function dimension ˆ variable dimension), optimiza-
tion time, number of nonlinear iterations, total constraint-
violation (as the norm of constraint violation vector in SI
units) and final cost in Table I. As a gradient-based manifold
optimizer iteratively linearizes cost functions, solves linear
systems, and applies linear updates to variables, we also
show the average timing results of the subtasks in Table II.
In multi-vehicle state estimation scenarios, the trajectories
generated by all methods are similar, and have the same
average pose error (APE). In the quadruped state estimation
scenario, the trajectories with manifold optimization achieve
a smaller APE of 0.307 compared to 0.316 with the soft
constraints, as evaluated on 4 different simulated trajectories.

VII. DISCUSSION

The manifold optimization method with constraint mani-
fold is overall more efficient than the other methods. First,
the manifold optimization method has a smaller problem
size, since the enforcement of constraints within the man-
ifolds reduces both the dimension of factors and the dimen-
sion of variables. Second, the manifold optimization method
does not require iteratively solving unconstrained optimiza-
tion problems compared to the penalty method and the aug-
mented Lagrangian method. Third, the manifold optimization
method converges faster than the soft constraint method due
to its better numerical properties, as indicated by its smaller
number of nonlinear iterations. The soft constraints, on the
other hand, may suffer from scaling issues [11], since the
large weighting factor µ assigned to the constraint factors
can result in a poorly conditioned problem.



TABLE I
COMPARISON OF CONSTRAINT MANIFOLD OPTIMIZATION WITH CONSTRAINED OPTIMIZATION METHODS ON MULTIPLE SCENARIOS

Scenario Method Problem Size Time (s) Iters Constraint Vio (m, rad, etc.) cost

Connected Poses

Soft Constraint 909 ˆ 606 0.0263 16 1.61e-02 141.43
Penalty Method 909 ˆ 606 0.1578 125 9.90e-03 142.43

Augmented Lagrangian 909 ˆ 606 0.1126 91 2.70e-03 143.72
Constraint Manifold (F) 606 ˆ 303 0.0237 16 1.45e-09 144.06
Constraint Manifold (I) 606 ˆ 303 0.0145 7 5.58e-13 144.06

Range Constraint

Soft Constraint 707 ˆ 606 0.0907 68 8.13e-03 40.96
Penalty Method 707 ˆ 606 0.2302 193 5.04e-03 38.40

Augmented Lagrangian 707 ˆ 606 0.6959 577 6.57e-03 40.29
Constraint Manifold (F) 606 ˆ 505 0.0698 41 1.26e-11 41.63
Constraint Manifold (I) 606 ˆ 505 0.0650 41 1.26e-11 41.63

Quadruped State Estimation

Soft Constraint 34338 ˆ 33000 1.8528 31 1.24e-02 558.3
Penalty Method 34338 ˆ 33000 3.1221 40 8.33e-03 610.8

Augmented Lagrangian 34338 ˆ 33000 3.9016 56 1.52e-02 536.7
Constraint Manifold (F) 4938 ˆ 3600 0.6569 5 5.95e-12 736.9
Constraint Manifold (I) 4938 ˆ 3600 0.6560 5 5.95e-12 736.9

Cart-Pole Planning

Soft Constraint 17293 ˆ 17286 6.1404 203 1.91e-03 782.7
Penalty Method 17293 ˆ 17286 29.3833 945 7.74e-06 769.0

Augmented Lagrangian 17293 ˆ 17286 23.3063 756 4.63e-06 771.6
Constraint Manifold (F) 1006 ˆ 1000 3.9304 53 3.22e-13 761.1
Constraint Manifold (I) 1006 ˆ 1000 2.6053 53 1.77e-11 761.1

Cable Robot Planning

Soft Constraint 68000 ˆ 62000 3.5738 12 1.80e-02 1.63
Penalty Method 68000 ˆ 62000 11.1374 34 1.12e-04 1.66

Augmented Lagrangian 68000 ˆ 62000 7.6237 22 1.63e-04 1.66
Constraint Manifold (F) 21988 ˆ 15988 2.5850 4 1.34e-12 1.66
Constraint Manifold (I) 21988 ˆ 15988 2.4474 4 3.06e-12 1.66

Quadruped Planning

Soft Constraint 14266 ˆ 13950 6.0160 203 2.84e-05 105.72
Penalty Method 14266 ˆ 13950 90.5319 3049 9.35e-08 48.53

Augmented Lagrangian 14266 ˆ 13950 74.3907 2436 3.69e-06 47.16
Constraint Manifold (F) 874 ˆ 558 6.1469 25 7.19e-11 47.09
Constraint Manifold (I) 874 ˆ 558 5.4528 29 3.56e-08 37.83

TABLE II
TIMING RESULTS FOR OPTIMIZATION SUBTASKS IN MANIFOLD OPTIMIZATION AND SOFT CONSTRAINT METHOD

Scenario Method Average Time per Nonlinear Iteration (ms)
Linearization Solve Linear System Apply Linear Update Other Total

Range Constraint
Soft Constraint 0.052 0.929 « 0 0.353 1.334

Constraint Manifold (F) 0.083 0.467 0.910 0.242 1.702
Constraint Manifold (I) 0.079 0.478 0.814 0.214 1.585

Cart-Pole Planning
Soft Constraint 1.03 24.14 0.71 4.36 30.25

Constraint Manifold (F) 1.11 1.14 70.64 1.27 74.16
Constraint Manifold (I) 1.08 1.19 44.84 2.04 49.16

The manifold optimization also provides results with better
optimality than the other methods. The constraint violation
is much smaller with the manifold optimization, since the
constraints are enforced in each retraction operation. In the
cart-pole and quadruped planning scenarios, the manifold
optimization manages to generate solutions with both smaller
costs and smaller constraint violations, which implies that
the manifold optimization problem is better conditioned with
fewer local minimums.

By inspecting the subtask timing results in Table II,
we discover that the manifold optimization saves time in
solving the linear system due to its smaller problem size,
while it increases the time to apply the linear update. The
overhead mostly results from the additional work needed to
solve the retraction optimization problem (23, 24). Luckily,
this overhead is reduced with the infeasible method, which
consistently converges to similar solutions as the feasible
method. Even though parallel computation is not imple-
mented for the experiments, the tangent spaces and retraction

operations of all constraint manifolds can be computed in
parallel, which can further speed up optimization.

For future work, we aim to evaluate the constraint mani-
fold optimization on real-world large-scale problems, study
how to formulate the constraint manifold around the rank
deficient conditions of the constraint Jacobian(i.e., when (8b)
does not hold), find ways to further improve the efficiency in
retraction operations, and incorporate inequality constraints.

VIII. CONCLUSION

We develop a constraint manifold optimization framework
to solve constrained inference and planning problems. Con-
straint manifolds with tangent spaces and retractions are
formulated to represent sets of variables subject to equality
constraints. We further improve the efficiency of constraint
manifold optimization by developing the infeasible methods.
In multiple scenarios, our manifold optimization generates
results with improved optimality and efficiency compared to
state-of-the-art constrained optimization methods.
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[25] P. Ablin and G. Peyré, “Fast and accurate optimization on the orthog-
onal manifold without retraction,” arXiv preprint arXiv:2102.07432,
2021.

[26] A. J. Rutkowski, J. E. Barnes, and A. T. Smith, “Path planning for
optimal cooperative navigation,” in 2016 IEEE/ION Position, Location
and Navigation Symposium (PLANS), 2016, pp. 359–365.

[27] G. Chen, S. Hutchinson, and F. Dellaert, “Locally optimal estimation
and control of cable driven parallel robots using time varying linear
quadratic gaussian control,” in 2022 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, 2022.

[28] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
Journal of guidance, control, and dynamics, vol. 21, no. 2, pp. 193–
207, 1998.

[29] M. Xie, A. Escontrela, and F. Dellaert, “A factor-graph approach
for optimization problems with dynamics constraints,” arXiv preprint
arXiv:2011.06194, 2020.

[30] L. Vandenberghe, “Constrained nonlinear least squares,”
http://www.seas.ucla.edu/ vandenbe/133B/lectures/nllseq.pdf, 2020.

[31] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep., 2012.


