Skip to content

Gerry's World

A glimpse into my life

Dynamically Controlled Environment Agriculture: Integrating Machine Learning and Mechanistic and Physiological Models for Sustainable Food Cultivation

Abigail Cohen, Gerry Chen, Eli Berger, Sushmita Warrier, Guanghui Lan, Emily Grubert, Frank Dellaert, and Yongsheng Chen

ACS ES&T Engineering 2021


Inefficiencies and imprecise input control in agriculture have caused devastating consequences to ecosystems. Urban controlled environment agriculture (CEA) is a proposed approach to mitigate the impacts of cultivation, but precise control of inputs (i.e., nutrient, water, etc.) is limited by the ability to monitor dynamic conditions. Current mechanistic and physiological plant growth models (MPMs) have not yet been unified and have uncovered knowledge gaps of the complex interplay among control variables. Moreover, because of their specificity, MPMs are of limited utility when extended to additional plant species or environmental conditions. Simultaneously, although machine learning (ML) can uncover latent interactions across conditions, phenotyping bottlenecks have hindered successful application. To bridge these gaps, we propose an integrative approach whereby MPMs are used to construct the foundations of ML algorithms, reducing data requirements and costs, and ML is used to elucidate parameters and causal inference in MPM. This review highlights research about control and automation in CEA, synthesizing literature into a framework whereby ML, MPM, and biofeedback inform what we call dynamically controlled environment agriculture (DCEA). We highlight synergistic characteristics of MPM and ML to illustrate that a DCEA framework could contribute to urban resilience, human health, and optimized productivity and nutritional content.

Links: [DOI]
Please note: some of these links may be broken. The links on the main publications page should always work, though.